Revista Fitos
O Brasil possui uma grande biodiversidade de plantas com propriedades nutricionais e biológicas importantes para a humanidade.
nutrição. O objetivo deste estudo é revisar o uso de plantas na nutrição e a presença de bioativos
compostos que trazem benefícios à saúde, referenciando pesquisas com seis diferentes espécies de plantas nativas e exóticas
(“açaí”, “canela”, “guaraná”, “hibisco”, “jambu” e “erva mate”). Numerosos estudos sobre
plantas acima mencionadas foram realizadas para avaliar e confirmar seus efeitos e benefícios. Clínico e
estudos metabólicos demonstraram que o consumo dessas plantas, principalmente de seus extratos, pode prevenir ou
tratar diversas doenças como Alzheimer, câncer, obesidade, diabetes, doenças cardiovasculares,
aterosclerose, fibrose hepática e cardiovascular. A utilização de extratos dessas plantas na alimentação melhora
algumas características de qualidade como estabilidade oxidativa, valor nutricional, higiênico-sanitário e sensorial
propriedades, além de os alimentos se tornarem funcionais com propriedades antioxidantes. Esta revisão indica que
essas plantas têm potencial para serem utilizadas como ingredientes em formulações de diversos alimentos e devem ser
considerada importante para estudos futuros com a investigação de seus efeitos sobre esses alimentos.DOI
10.32712/2446-4775.2025.1667
Edição
Identificação
Referências do artigo
Grzeszczuk M, Stefaniak A, Meller E, Wysocka G. Mineral composition of some edible flowers. J
Elementol. 2018; 23(1): 151-162. [https://doi.org/10.5601/jelem.2017.22.2.1352].
Franzen FL, Oliveira MSR, Menegaes JF, Gusso AP, Silva MN, Richards NSPS. Physico-chemical,
microbiological and sensory characteristics of jellies made with rose and hibiscus flowers. Braz J Dev. 2020;
(3): 14828-14845. [https://doi.org/10.34117/bjdv6n3-377].
Franzen FL, Menegaes JF, Rosa JR, Pigatto GM, Lidório HF, Backes FAAL, et al. Antioxidant and
antimicrobial activity of edible flower extracts obtained by different extraction methods. Ensaios Ciênc.
; 25(4): 513-520. [https://doi.org/10.17921/1415-6938.2021v25n4p513-520].
Stefaniak A, Grzeszczuk ME. Nutritional and biological value of five edible flower species. Not Bot Horti
Agrobo. 2019; 47(1): 128-134. [https://doi.org/10.15835/nbha47111136].
Marques LLM, Ferreira EDF, Paula MND, Klein T, Mello JCPD. Paullinia cupana: a multipurpose plant-a
review. Rev Bras Farmacogn. 2019; 29: 77-110. [https://doi.org/10.1016/j.bjp.2018.08.007].
Pires IV, Silva AE. Caracterização e capacidade antioxidante do jambu (Spilanthes oleracea L.) in natura
procedente do cultivo convencional e de hidroponia. Braz J Dev. 2020; 6(10): 74624-74636.
[https://doi.org/10.34117/bjdv6n10-040].
Machado KN, Barbosa AP, De Freitas AA, Alvarenga LF, De Padua RM, Faraco AAG, et al. TNF-α
inhibition, antioxidant effects and chemical analysis of extracts and fraction from Brazilian guarana seed
powder. Food Chem. 2021; 355: 129563. [https://doi.org/10.1016/j.foodchem.2021.129563].
Bruxel F, Rodrigues KF, Gastmann J, Winhelmann MC, Silva SM, Hoehne L, De Freitas EM, et al.
Phytotoxicity of aqueous extract of Ilex paraguariensis A. St.-Hil on Conyza bonariensis (L). Cronquist. Sci
Afr J Bot. 2022; 146: 546-552. [https://doi.org/10.1016/j.sajb.2021.10.019].
Silva HRD, Assis DDCD, Prada AL, Silva JOC, Sousa MBD, Ferreira AM, et al. Obtaining and
characterization of anthocyanins from Euterpe oleracea (açaí) dry extract for nutraceutical and food
preparations. Rev Bras Farmacogn. 2019; 29: 677-685. [https://doi.org/10.1016/j.bjp.2019.03.004].
Aguiar BAA, Bueno FG, Panizzon G, Silva DBD, Athaydes BR, Gonçalves RDCR, et al. Chemical
analysis of the semipurified extract of Paullinia cupana and evaluation of in vitro inhibitory effects against
Helicobacter pylori. Nat Prod Res. 2020; 34(16): 2332-2335.
[https://doi.org/10.1080/14786419.2018.1533825].
Sandamali JAN, Hewawasam RP, Jayatilaka KAPW, Mudduwa LKB. Cinnamomum zeylanicum Blume
(Ceylon cinnamon) bark extract attenuates doxorubicin induced cardiotoxicity in Wistar rats. Saudi Pharm
J. 2021; 29(8): 820-832. [https://doi.org/10.1016/j.jsps.2021.06.004].
Husin NNA, Balkis BS, Abd Hamid Z, Abd Rahman M, Louis SR, Osman M, et al. Aqueous calyxes
extract of Roselle or Hibiscus sabdariffa Linn supplementation improves liver morphology in streptozotocin
induced diabetic rats. Arab J Gastroenterol. 2017; 18: 13-20. [https://doi.org/10.1016/j.ajg.2017.02.001].
Dallazen JL, Maria-Ferreira D, Luz BB, Nascimento AM, Cipriani TR, Souza LM, et al. Pharmacological
potential of alkylamides from Acmella oleracea flowers and synthetic isobutylalkyl amide to treat inflammatory
pain. Inflammopharmacol. 2020; 28: 175–186. [https://doi.org/10.1007/s10787-019-00601-9].
Habtemariam S. The chemical and pharmacological basis of yerba maté (Ilex paraguariensis A.
St.-Hil.) as potential therapy for type 2 diabetes and metabolic syndrome. Medicinal foods as
potential therapies for type-2 diabetes and associated diseases. Academic Press. New York: NY; USA;
p. 943-983.
Lucas BF, Costa JAV, Brunner TA. Attitudes of consumers toward Spirulina and açaí and their use as
food ingredients. LWT. 2023; 178: 114600. [https://doi.org/10.1016/j.lwt.2023.114600].
Silveira JT, Rosa APC, Morais MG, Victoria FN, Costa JAV. An integrative review of Açaí (Euterpe
oleracea and Euterpe precatoria): traditional uses, phytochemical composition, market trends, and emerging
applications. Food Res Inter. 2023; 113304. [https://doi.org/10.1016/j.foodres.2023.113304].
Lucas BF, Zambiazi RC, Costa JAV. Biocompounds and physical properties of açaí pulp dried by
different methods. LWT. 2018; 98: 335-340. [https://doi.org/10.1016/j.lwt.2018.08.058].
Lucas BF, Guelpa R, Vaihinger M, Brunner T, Costa JAV, Denkel C. Extruded snacks enriched with açaí
berry: physicochemical properties and bioactive constituents. Food Sci Technol. 2022; 42: e14822.
[https://doi.org/10.1590/fst.14822].
Yamaguchi KKL, Pereira LFR, Lamarão CV, Lima ES, Veiga-Junior VF. Amazon açai: Chemistry and
biological activities: A review. Food chemistry. 2015; 179: 137-151.
https://doi.org/10.1016/j.foodchem.2015.01.055].
Brasil. Instituto Brasileiro de Geografia e Estatística-IBGE. Produção de Açaí (cultivo) no Brasil. 2022.
[Accessed 21 Ago 2024]. Available in: [https://www.ibge.gov.br/explica/producao-agropecuaria/acaicultivo/br].
De Jesus ALT, Cristianini M, Santos NM, Maróstica Júnior MR. Effects of high hydrostatic pressure on
the microbial inactivation and extraction of bioactive compounds from açaí (Euterpe oleracea Martius) pulp.
Food Res Int. 2020; 130: 108856. [https://doi.org/10.1016/j.foodres.2019.108856].
Barbosa PO, Souza MO, Silva MP, Santos GT, Silva ME, Bermano G, et al. Açaí (Euterpe oleracea
Martius) supplementation improves oxidative stress biomarkers in liver tissue of dams fed a high-fat diet and
increases antioxidant enzymes’ gene expression in offspring. Biomed Pharmacother. 2021; 139: 111627.
[https://doi.org/10.1016/j.biopha.2021.111627].
Vigano J, De Aguiar AC, Veggi PC, Sanches VL, Rostagno MA, Martinez J. Techno-economic evaluation
for recovering phenolic compounds from açaí (Euterpe oleracea) by-product by pressurized liquid extraction.
J Supercrit Fluids. 2022; 179: 105413. [https://doi.org/10.1016/j.supflu.2021.105413].
Amorim DS, Amorim IS, Chisté RC, Fernandes FAN, Mariutti LRB, Godoy HT, et al. Nonthermal
technologies for the conservation of açaí pulp and derived products: A comprehensive review. Food Res
Inter. 2023; 113575. [https://doi.org/10.1016/j.foodres.2023.113575].
Garzón GA, Narváez-Cuenca CE, Vincken JP, Gruppen H. Polyphenolic composition and antioxidant
activity of açaí (Euterpe oleracea Mart.) from Colombia. Food Chem. 2017; 217: 364-372.
[https://doi.org/10.1016/j.foodchem.2016.08.107].
Barbosa PO, De Souza MO, Pala D, Freitas RN. Açaí (Euterpe oleracea Martius) as an antioxidant.
Pathology. 2020; 127-133. [https://doi.org/10.1016/B978-0-12-815972-9.00012-3].
Si LW. Trending foods and beverages. In: Food Society. Academic Press. 2020; 305-321.
[https://doi.org/10.1016/B978-0-12-811808-5.00016-7].
Oliveira NKS, Almeida MRS, Pontes FMM, Barcelos MP, Silva CHTP, Rosa JMC, et al. Antioxidant effect
of flavonoids present in Euterpe oleraceae Martius and neurodegenerative diseases: a literature review.
Cent Nerv Syst Agents Med Chem. 2019; 19 (2): 75-99.
[https://doi.org/10.2174/1871524919666190502105855].
Barros L, Calhelha RC, Queiroz MJR, Santos-Buelga C, Santos EA, Regis WC, et al. The powerful in
vitro bioactivity of Euterpe oleracea Mart. seeds and related phenolic compounds. Ind Crops Prod. 2015;
: 318-322. [https://doi.org/10.1016/j.indcrop.2015.05.086].
Machado AK, Cadoná FC, Assmann CE, Andreazza AC, Duarte MMMF, Branco CS, et al. Açaí (Euterpe
oleracea Mart.) has anti-inflammatory potential through NLRP3-inflammasome modulation. J Funct Foods.
; 56: 364-371. [https://doi.org/10.1016/j.jff.2019.03.034].
Sharifi-Rad J, Dey A, Koirala N, Shaheen S, El Omari N, Salehi B, et al. Cinnamomum species: bridging
phytochemistry knowledge, pharmacological properties and toxicological safety for health benefits. Front
Pharmacol. 2021; 12: 600139. [https://doi.org/10.3389/fphar.2021.600139].
Mini Raj N, Vikram HC, Muhammed Nissar VA, Nybe EV. Cinnamon and Indian Cinnamon (Indian
Cassia). In: Handbook of Spices in India: 75 Years of Research and Development. Singapore: Springer
Nature Singapore. 2023; 2921-2991. [https://doi.org/10.1007/978-981-19-3728-6_43].
Khoshnevisan K, Alipanah H, Baharifar H, Ranjbar N, Osanloo M. Chitosan nanoparticles containing
cinnamomum verum J. Presl essential oil and cinnamaldehyde: preparation, characterization and anticancer
effects against melanoma and breast cancer cells. Trad Integr Medic. 2022; 7(1): 1-12.
[https://doi.org/10.18502/tim.v7i1.9058].
Nazareno AM, Purnamasari L, Dela Cruz JF. In vivo and in vitro anti-diabetic effects of cinnamon
(Cinnamomum sp.) plant extract: A review. Canrea J Food Technol Nutr Culin J. 2022; 5(2): 151–171.
[https://doi.org/10.20956/canrea.v5i2.673].
Labbaci FZ, Belkhodja H, Elkadi FZ, Megharbi A, Belhouala K. HPLC-MS Analysis and evaluation of
Antioxidant and Anti-Inflammatory Potential of Cinnamomum cassia Extract. Tropic J Nat Prod Res. 2023;
(8): 3637-3642. [http://www.doi.org/10.26538/tjnpr/v7i8.10].
Gogoi R, Sarma N, Loying R, Pandey Sk, Begum T, Lal M. A comparative analysis of bark and leaf
essential oil and their chemical composition, antioxidant, anti-inflammatory, antimicrobial activities and
genotoxicity of northeast Indian Cinnamomum zeylanicum Blume. J Nat Prod. 2021; 11(1): 74-84.
[https://doi.org/10.2174/2210315509666191119111800].
Chuesiang P, Siripatrawan U, Sanguandeekul R, Yang JS, McClements DJ, McLandsborough L.
Antimicrobial activity and chemical stability of Cinnamon oil in oil-in-water nanoemulsions fabricate during
the phase inversion temperature method. LWT. 2019; 110: 190-196.
[https://doi.org/10.1016/j.lwt.2019.03.012].
Muhammad DRA, Tuenter E, Patria GD, Foubert K, Pieters L, Dewettinck K. Phytochemical composition
and antioxidant activity of Cinnamomum burmannii Blume extracts and their potential application in white
chocolate. Food Chem. 2021; 340: 127983. [https://doi.org/10.1016/j.foodchem.2020.127983].
Tamfu AN, Kucukaydin S, Ceylan O, Sarac N, Duru ME. Phenolic composition, enzyme inhibitory and
anti-quorum sensing activities of cinnamon (Cinnamomum zeylanicum Blume) and Basil (Ocimum basilicum
Linn). Chem Africa. 2021; 4: 759–767. [https://doi.org/10.1007/s42250-021-00265-5].
Marques LLM, Panizzon GP, Aguiar BAA, Simionato AS, Cardozo-Filho L, Andrade G, et al. Guaraná
(Paullinia cupana) seeds: Selective supercritical extraction of phenolic compounds. Food Chem. 2016; 212:
-711. [https://doi.org/10.1016/j.foodchem.2016.06.028].
Roggia I, Dalcin AJF, De Souza D, Machado AK, De Souza DV, Da Cruz IBM, et al. Guarana: StabilityIndicating RP-HPLC method and safety profile using microglial cells. J Food Compost Anal. 2020; 94:
[https://doi.org/10.1016/j.jfca.2020.103629].
Bittencourt LDS, Zeidán‐Chuliá F, Yatsu FKJ, Schnorr CE, Moresco KS, Kolling EA, et al. Guarana
(Paullinia cupana Mart.) prevents β‐amyloid aggregation, generation of advanced glycation‐end products
(AGEs), and acrolein‐induced cytotoxicity on human neuronal‐like cells. Phytother Res. 2014; 28(11): 1615-
[https://doi.org/10.1002/ptr.5173].
Hertz E, Cadoná FC, Machado AK, Azzolin V, Holmrich S, Assmann C, et al. Effect of Paullinia cupana
on MCF‐7 breast cancer cell response to chemotherapeutic drugs. Mol Clin Oncol. 2015; 3(1) 37-43.
[https://doi.org/10.3892/mco.2014.438].
Kober H, Tatsch E, Torbitz VD, Cargnin LP, Sangoi MB, Bochi GV, et al. Genoprotective and
hepatoprotective effects of Guarana (Paullinia cupana Mart. var. sorbilis) on CCl4-induced liver damage in
rats. Drug Chem Toxicol. 2016; 39(1): 48-52. [https://doi.org/10.3109/01480545.2015.1020546].
Flores ERS, Dal Berto M, Ranzi AD, Cadoná FC, Machado A, Santos GFF, et al. Effect of guarana
extract (Paullinia cupana), an amazonian fruit richest in caffeine on human bladder cancer cell line.
Rev Bras Geriat Gerontol. 2017; 8: 88-102. [https://doi.org/10.1016/j.jfca.2020.103629].
Krewer CC, Suleiman L, Duarte MMMF, Ribeiro EE, Mostardeiro CP, Montano MAE, et al. Guarana, a
supplement rich in caffeine and catechin, modulates cytokines: evidence from human in vitro and in vivo
protocols. Eur Food Res Technol. 2014; 239(1): 49-57. [https://doi.org/10.1007/s00217-014-2182-3].
Schimpl FC, Kiyota E, Mayer JLS, Gonçalves JFC, Silva JF, Mazzafera P. Molecular and biochemical
characterization of caffeine synthase and purine alkaloid concentration in guarana fruit. Phytochemistry.
; 105: 25-36. [https://doi.org/10.1016/j.phytochem.2014.04.018].
Richardson ML, Arlotta CG. Differential yield and nutrients of Hibiscus sabdariffa L. genotypes when
grown in urban production systems. Sci Hortic. 2021; 288: 110349.
[https://doi.org/10.1016/j.scienta.2021.110349].
Borrás-Linares I, Fernández-Arroyo S, Arráez-Roman D, Palmeros-Suárez PA, Del Val-Díaz R,
Andrade-Gonzáles I, et al. Characterization of phenolic compounds, anthocyanidin, antioxidant and
antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Ind Crops Prod. 2015; 69:
-394. [https://doi.org/10.1016/j.indcrop.2015.02.053].
Wang C, Karmakar B, Awwad NS, Ibrahium HA, El-Kott AF, Abdel-Daim MM, Batiha GES, et al. Biosupported of Cu nanoparticles on the surface of Fe3O4 magnetic nanoparticles mediated by Hibiscus
sabdariffa extract: Evaluation of its catalytic activity for synthesis of pyrano [3, 2-c] chromenes and study of
its anti-colon cancer properties. Arab J Chem. 2022; 15(6): 103809.
[https://doi.org/10.1016/j.arabjc.2022.103809].
Su N, Li J, Yang L, Hou G, Ye M. Hypoglycemic and hypolipidemic effects of fermented milks with added
roselle (Hibiscus sabdariffa L.) extract. J Funct Foods. 2018; 43: 234-241.
[https://doi.org/10.1016/j.jff.2018.02.017].
Vargas-León EA, Díaz-Batalla L, González-Cruz L, Bernardino-Nicanor A, Castro-Rosas J, ReynosoCamacho R, et al. Effects of acid hydrolysis on the free radical scavenging capacity and inhibitory activity of
the angiotensin converting enzyme of phenolic compounds of two varieties of jamaica (Hibiscus sabdariffa).
Ind Crops Prod. 2018; 116: 201-208. [https://doi.org/10.1016/j.indcrop.2018.02.044].
Chen JH, Wang CJ, Wang CP, Sheu JY, Lin CL, Lin HH. Hibiscus sabdariffa leaf polyphenolic extract
inhibits LDL oxidation and foam cell formation involving up-regulation of LXRα/ABCA1 pathway. Food
Chem. 2013; 141(1): 397-406. [https://doi.org/10.1016/j.foodchem.2013.03.026].
Chang HC, Peng CH, Yeh DM, Kao ES, Wang CJ. Hibiscus sabdariffa extract inhibits obesity and fat
accumulation and improves liver steatosis in humans. Food Funct. 2014; 5(4): 734-739.
[https://doi.org/10.1039/C3FO60495K].
Adewuyi A, Otuechere CA, Adebayo OL, Oyeka M, Adewole C. Atherogenic index and lipid profiles in
albino rats fed with surface modified Hibiscus sabdariffa cellulose. Scient African. 2021; 14: e01025.
[https://doi.org/10.1016/j.sciaf.2021.e01025].
Kaulika N, Febriansah R. Chemopreventive activity of roselle’s hexane fraction against breast
cancer by in-vitro and in-silico study. In: Third international conference on sustainable innovation
–health science and nursing (IcoSIHSN 2019). Atlantis Press. 2019. 66-71.
[https://doi.org/10.2991/icosihsn-19.2019.16].
El Bayani GF, Marpaung NLE, Simorangkir DAS, Sianipar IR, Ibrahim N, Kartinah NT, et al. Antiinflammatory effects of Hibiscus sabdariffa Linn. on the IL-1β/IL-1ra ratio in plasma and hippocampus of
overtrained rats and correlation with spatial memory. Kobe J Med Sci. 2018; 64(2): E73. Available in:
[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347049/].
Ojulari OV, Lee SG, Nam JO. Beneficial effects of natural bioactive compounds from Hibiscus sabdariffa
L. on obesity. Molecules. 2019; 24(1): 210. [https://doi.org/10.3390/molecules24010210].
Agunbiade HO, Fagbemi TN, Aderinola TA. Composition and antioxidant properties of beverages from
graded mixture of green/roasted coffee and Hibiscus sabdariffa calyx flours. Appl. Food Res. 2022; 100163.
[https://doi.org/10.1016/j.afres.2022.100163].
Paulraj J, Govindarajan R, Palpu P. The genus Spilanthes ethnopharmacology, phytochemistry, and
pharmacological properties: A review. Adv Pharmacol Sci. 2013; 2013(1): 510298. Available in:
[https://onlinelibrary.wiley.com/doi/full/10.1155/2013/510298].
Uthpala TGG, Navaratne SB. Acmella oleracea plant; identification, applications and use as an emerging
food source–review. Food Rev. Int. 2021; 37 (4): 399-414.
[https://doi.org/10.1080/87559129.2019.1709201].
Lalthanpuii PB, Lalchhandama K. Chemical composition and broad-spectrum anthelmintic activity of a
cultivar of toothache plant, Acmella oleracea, from Mizoram, India. Pharm Biol. 2020; 58(1): 393-399.
[https://doi.org/10.1080/13880209.2020.1760316].
Joshi V, Sharma GD, Jadhav SK. Alkamides: Multifunctional bioactive agents in Spilanthes spp. J Sci
Res. 2020; 64: 198–206. [https://doi.org/10.37398/JSR.2020.640129].
Barbosa AF, De Carvalho MG, Smith RE, Sabaa-Srur AUO. Spilanthol: Occurrence, extraction,
chemistry and biological activities. Rev Bras Farmacogn. 2016; 26: 128–133.
[https://doi.org/10.1016/j.bjp.2015.07.024].
Nascimento LES, Arriola NDA, Silva LAL, Faqueti LG, Sandjo LP, Araújo CES, et al. Phytochemical
profile of different anatomical parts of jambu (Acmella oleracea (L.) R.K. Jansen): A comparison between
hydroponic and conventional cultivation using PCA and cluster analysis. Food Chem. 2020; 332: 127393.
[https://doi.org/10.1016/j.foodchem.2020.127393].
Nodari E, Gerhardt M. The Uruguay River: A Permeable Border in South America. Rev Inter Amer
Studies. 2021; 14(1): 201-227. [https://doi.org/10.31261/rias.10047].
Alves FEDSB, Scheer AP. Yerba mate (Ilex paraguariensis), science, technology and health: A
systematic review on research, recent advances and possible paths for future studies. South African J
Botany. 2024; 168: 573-587. [https://doi.org/10.1016/j.sajb.2024.04.008].
Cardozo Junior EL, Morand C. Interest of mate (Ilex paraguariensis A. St.- Hil.) as a new natural
functional food to preserve human cardiovascular health - a review. J Funct Foods. 2016; 21: 440-454.
[https://doi.org/10.1016/j.jff.2015.12.010].
Cardozo AGL, Rosa RL, Novak RS, Folquitto DG, Schebelski DJ, Brusamarello LCC, et al. Yerba mate
(Ilex paraguariensis A. St. – hil.): a comprehensive review on chemical composition, health benefits and
recent advances. Res Soc Dev. 2021; 10(11): e590101120036. [https://doi.org/10.33448/rsdv10i11.20036].
Bracesco N, Sanchez AG, Contreras V, Menini T, Gugliucci A. Recent advances on Ilex paraguariensis
research: minireview. J Ethnopharmacol. 2011; 136(3): 378-384.
[https://doi.org/10.1016/j.jep.2010.06.032].
Farias IV, Fratoni E, Theindl LC, Campos AM, Dalmarco EM, Reginatto FH. In Vitro Free Radical
Scavenging Properties and Anti‐Inflammatory Activity of Ilex paraguariensis (Maté) and the Ability of Its
Major Chemical Markers to Inhibit the Production of Proinflammatory Mediators. Mediators Inflammat.
; 2021(1): 7688153. [https://doi.org/10.1155/2021/7688153].
Cogoi L, Marrassini C, Saint Martin EM, Alonso MR, Filip R, Anesini C. Inhibition of Glycation End
Products Formation and Antioxidant Activities of Ilex paraguariensis: comparative study of fruit and leaves
extracts. J Pharmacopunct. 2023; 26(4): 338–347. [https://doi.org/10.3831%2FKPI.2023.26.4.338].
Lutomski P, Gozdziewska M, Florek-Luszczki M. Health properties of yerba mate. Annals Agric Environ
Medic. 2020; 27(2): 310-313. [http://dx.doi.org/10.26444/aaem/119994].
Bojić M, Haas VS, Šarić D, Maleš Ž. Determination of flavonoids, phenolic acids, and xanthines in mate
tea (Ilex paraguariensis St.-Hil.). J Anal Methods Chem. 2013; 2013(1): 658596. Available in:
[https://onlinelibrary.wiley.com/doi/full/10.1155/2013/658596].
Braghini F, De Carli CG, Bonsaglia B, Silveira Jr JFS, Oliveira DF, Tramujas J, et al. Composição físicoquímica de erva-mate, antes e após simulação do chimarrão. Pesq Agropec Gaúcha. 2014; 20(1/2): 7-15.
Available in: [https://revistapag.agricultura.rs.gov.br/ojs/index.php/revistapag/article/view/63/48].
Silveira TFF, Meinhart AD, Coutinho JP, Souza TCL, Cunha ECE, Moraes MR, et al. Content of lutein
in aqueous extracts of yerba mate (Ilex paraguariensis St. Hil). Food Res Int. 2016; 82: 165-171.
[https://doi.org/10.1016/j.foodres.2015.12.033].
Barbosa P, Pala D, Silva C, Souza M, Volp AC, Freitas R. P46 Acaí pulp (Euterpe oleraceae Martius)
consumption improves lipidic peroxidation markers in healthy women. Biochem Pharmacol. 2017; 139:
[https://doi.org/10.1016/j.bcp.2017.06.047].
Pontes VCB, Tavares JPTM, Rosenstock TR, Rodrigues DS, Yudi MI, Soares JPM, et al. Increased
acute blood flow induced by the aqueous extract of Euterpe oleracea Mart. fruit pulp in rats in vivo is not
related to the direct activation of endothelial cells. J Ethnopharmacol. 2021; 271: 113885.
[https://doi.org/10.1016/j.jep.2021.113885].
Romão MH, De Bem GF, Santos IB, Soares RA, Ognibene DT, Moura RS, et al. Açaí (Euterpe oleracea
Mart.) seed extract protects against hepatic steatosis and fibrosis in high-fat diet-fed mice: Role of local
renin-angiotensin system, oxidative stress and inflammation. J Funct Foods. 2020; 65: 103726.
[https://doi.org/10.1016/j.jff.2019.103726].
Dias-Souza MV, Dos Santos RM, Cerávolo IP, Cosenza G, Marçal PHF. Euterpe oleracea pulp extract:
Chemical analyses, antibiofilm activity against Staphylococcus aureus, cytotoxicity and interference on the activity of antimicrobial drugs. Microb Pathog. 2018; 114: 29-35.[
https://doi.org/10.1016/j.micpath.2017.11.006].
Souza-Monteiro JR, Hamoy M, Santana-Coelho D, Arrifano GP, Paraense RS, Costa-Malaquias A, et
al. Anticonvulsant properties of Euterpe oleracea in mice. Neurochem Int. 2015; 90: 20-27.
[https://doi.org/10.1016/j.neuint.2015.06.014].
Di Ottavio F, Gauglitz JM, Ernst M, Panitchpakdi MW, Fanti F, Compagnone D, et al. A UHPLC-HRMS
based metabolomics and chemoinformatics approach to chemically distinguish ‘super foods’ from a variety
of plant-based foods. Food Chem. 2020; 313: 126071. [https://doi.org/10.1016/j.foodchem.2019.126071].
Kiran S, Kujur A, Prakash B. Assessment of preservative potential of Cinnamomum zeylanicum Blume
essential oil against food borne molds, aflatoxin B1 synthesis, its functional properties and mode of action.
Innov Food Sci Emerg Technol. 2016; 37: 184-191. [https://doi.org/10.1016/j.ifset.2016.08.018].
Ranucci D, Branciari R, Cobellis G, Acuti G, Miraglia D, Olivieri O, et al. Dietary essential oil mix improves
oxidative stability and hygienic characteristics of lamb meat. Small Rumin Res. 2019; 175: 104-109.
[https://doi.org/10.1016/j.smallrumres.2019.04.012].
Matsuura E, Godoy JSR, Bonfim-Mendonça PS, Mello JCP, Svidzinski TIE, Gasparetto A, et al. In vitro
effect of Paullinia cupana (guarana) on hydrophobicity, biofilm formation, and adhesion of Candida albicans
to polystyrene, composites, and buccal epithelial cells. Arch Oral Biol. 2015; 60: 471-478.
[https://doi.org/10.1016/j.archoralbio.2014.05.026].
Rangel MP, De Mello JCP, Audi EA. Evaluation of neurotransmitters involved in the anxiolytic and
panicolytic effect of the aqueous fraction of Paullinia cupana (guarana) in elevated T maze. Rev Bras
Farmacogn. 2013; 23(2): 358-365. [https://doi.org/10.1590/S0102-695X2013005000024].
Silva GS, Canuto KM, Ribeiro PRV, De Brito ES, Nascimento MM, Zocolo GJ, et al. Chemical profiling
of guarana seeds (Paullinia cupana) from different geographical origins using UPLC-QTOF-MS combined
with chemometrics. Food Res Int. 2017; 102: 700-709. [https://doi.org/10.1016/j.foodres.2017.09.055].
Cadoná FC, Rosa JL, Schneider T, Cubillos-Rojas M, Sánchez-Tena S, Azzolin VF, et al. Guarana, a
highly caffeinated food, presents in vitro antitumor activity in colorectal and breast cancer cell lines by
inhibiting AKT/mTOR/S6K and MAPKs pathways. Nutr Cancer. 2017; 69(5): 800-810.
[https://doi.org/10.1080/01635581.2017.1324994].
Półtorak A, Marcinkowska-Lesiak M, Lendzion K, Moczkowska M, Onopiuk A, Wojtasik-Kalinowska I, et
al. Evaluation of the antioxidant, anti-inflammatory and antimicrobial effects of catuaba, galangal, roseroot,
maca root, guarana and polyfloral honey in sausages during storage. LWT. 2018; 96: 364-370.
[https://doi.org/10.1016/j.lwt.2018.05.035].
Portella RDL, Barcelos RP, Rosa EJF, Ribeiro EE, Cruz IBM, Suleiman L, et al. Guarana (Paullinia
cupana Kunth) effects on LDL oxidation in elderly people: an in vitro and in vivo study. Lipids Health Dis.
; 12(1): 1-9. [https://doi.org/10.1186/1476-511X-12-12].
Frimpong G, Adotey J, Ofori-Kwakye K, Kipo SL, Dwomo-Fokuo Y. Potential of aqueous extract of
Hibiscus sabdariffa calyces as colouring agent in three paediatric oral pharmaceutical formulations.
J Appl Pharm Sci. 2014; 4(12): 001-007. [https://dx.doi.org/10.7324/JAPS.2014.41201].
Wang J, Cao X, Jiang H, Qi Y, Chin KL, Yue Y. Antioxidant activity of leaf extracts from different Hibiscus
sabdariffa accessions and simultaneous determination five major antioxidant compounds by LC-Q-TOF-MS.
Molecules. 2014; 19(12): 21226-21238. [https://doi.org/10.3390/molecules191221226].
Huang HC, Chang WT, Wu YH, Yang BC, Xu MR, Lin MK, et al. Phytochemicals levels and biological
activities in Hibiscus sabdariffa L. were enhanced using microbial fermentation. Ind Crops Prod. 2022; 176:
[https://doi.org/10.1016/j.indcrop.2021.114408].
Higginbotham KL, Burris KP, Zivanovic S, Davidson PM, Stewart Jr CN. Aqueous extracts of Hibiscus
sabdariffa calyces as an antimicrobial rinse on hot dogs against Listeria monocytogenes and methicillinresistant Staphylococcus aureus. Food Control. 2014; 40: 274-277.
[https://doi.org/10.1016/j.foodcont.2013.12.011].
Nafizah AHN, Budin SB, Santhana RL, Osman M, Hanis MIM, Jamaludin M. Aqueous calyxes extract of
Roselle or Hibiscus sabdariffa Linn supplementation improves liver morphology in streptozotocin induced
diabetic rats. Arab J Gastroenterol. 2017; 18(1): 13-20. [https://doi.org/10.1016/j.ajg.2017.02.001].
Ogundele OM, Awolu OO, Badejo AA, Nwachukwu ID, Fagbemi TN. Development of functional
beverages from blends of Hibiscus sabdariffa extract and selected fruit juices for optimal antioxidant
properties. Food Sci Nutr. 2016; 4(5): 679-685. [https://doi.org/10.1002/fsn3.331].
Chakraborty A, Devi RKB, Rita S, Sharatchandra KH, Singh TI. Preliminary studies on anti-inflammatory
and analgesic activities of Spilanthes acmella in experimental animal models. Indian J Pharmacol. 2004;
(3): 148-150. Available in:
[https://journals.lww.com/iphr/fulltext/2004/36030/preliminary_studies_on_antiinflammatory_and.4.aspx].
Ley JP, Krammer G, Looft J, Reinders G, Bertram HJ. Structure-activity relationships of trigeminal effects
for artificial and naturally occurring alkamides related to spilanthol. In: Dev Food Sci. Elsevier. 2006; 43: 21-
[https://doi.org/10.1016/S0167-4501(06)80006-3].
Wu LC, Fan NC, Lin MH, Chu IR, Huang SJ, Hu CY, et al. Anti-inflammatory effect of spilanthol from
Spilanthes acmella on murine macrophage by down-regulating LPS-induced inflammatory mediators. J
Agric Food Chem. 2008; 56 (7): 2341-2349. Available in: [https://pubs.acs.org/doi/full/10.1021/jf073057e].
Chakraborty A, Devi RKB, Sanjebam R, Khumbong S, Thokchom IS. Preliminary studies on local
anesthesic and antipyretic activies of Spilanthes acmella Murr. in experimental animals models. Indian
J Pharmacol. 2010; 42(5): 277-279. [https://doi.org/10.4103/0253-7613.70106].
Ratnasoorya WD, Pieris KPP, Samaratunga U, Jayakody JRAC. Diuretic activity of Spilanthes acmella
flowers in rats. J Ethnopharmacol. 2004; 91: 317-320. [https://doi.org/10.1016/j.jep.2004.01.006].
Ekanem AP, Wang M, Simon JE, Moreno DA. Antiobesity properties of two African plants (Afromomum
meleguetta and Spilanthes acmella) by pancreatic lipase inhibition. Phytother Res. 2007; 21(12): 1253-
[https://doi.org/10.1002/ptr.2239].
Sharma V, Boonen J, Chauhan NS, Thakur M, Spiegeleer BDE, Dixit VK. Spilanthes acmella ethanolic
flower extract: LC-MS alkylamide profiling and its effects on sexual behavior in male rats. Phytomedicine.
; 18(13) 1161–1169. [https://doi.org/10.1016/j.phymed.2011.06.001].
Anesini C, Turner S, Cogoi L, Filip R. Study of the participation of caffeine and polyphenols on the
overall antioxidant activity of mate (Ilex paraguariensis). LWT-Food Science and Technol. 2012; 45(2):
-304. [https://doi.org/10.1016/j.lwt.2011.06.015].
Peres RG, Tonin FG, Tavares MF, Rodriguez-Amaya DB. HPLC-DAD-ESI/MS identification and
quantification of phenolic compounds in Ilex paraguariensis beverages and on-line evaluation of individual
antioxidant activity. Molecules. 2013; 18(4): 3859-3871. [https://doi.org/10.3390/molecules18043859].
Blum-Silva CH, Chaves VC, Schenkel EP, Coelho GC, Reginatto FH. The influence of leaf age on
methylxanthines, total phenolic content, and free radical scavenging capacity of Ilex paraguariensis aqueous
extracts. Rev Bras Farmacogn. 2015; 25: 1-6. [https://doi.org/10.1016/j.bjp.2015.01.002].
Brasilino MS, Pereira AAF, Zepponi KMC, Chaves Neto AHC, Carvalho AAF, Nakamune ACDMS. Erva
mate minimiza as alterações do perfil lipídico promovidas por elevado consumo de sacarose. Arch Health
Investig. 2013; 2(5). Available in: [https://archhealthinvestigation.emnuvens.com.br/ArcHI/article/view/310].
Fagundes A, Danguy LB, Schmitt V, Mazur CE. Ilex paraguariensis: bioactive compounds and
nutritional properties in health. Rev Bras Obes Nutr Emagrec. 2015; 9(53): 213-223. Available in:
[https://link.gale.com/apps/doc/A531171232/AONE?u=unicamp_br&sid=googleScholar&xid=7b9055bc].
Pereira DF, Kappel VD, Cazarolli LH, Boligon AA, Athayde ML, Guesser SM, et al. Influence of the
traditional Brazilian drink Ilex paraguariensis tea on glucose homeostasis. Phytomedicine. 2012; 19(10):
-877. [https://doi.org/10.1016/j.phymed.2012.05.008].
Gambero A, Ribeiro ML. The positive effects of yerba maté (Ilex paraguariensis) in obesity. Nutrients.
; 7(2): 730-750. [https://doi.org/10.3390/nu7020730].
Rocha DS, Casagrande L, Model JFA, Dos Santos JT, Hoefel AL, Kucharski LC. Effect of yerba mate
(Ilex paraguariensis) extract on the metabolism of diabetic rats. Biomed Pharmacother. 2018; 105: 370-
[https://doi.org/10.1016/j.biopha.2018.05.132].
Lima ME, Colpo AZC, Rosa H, Salgueiro ACF, Silva MP, Noronha DS, et al. Ilex paraguariensis extracts
reduce blood glucose, peripheral neuropathy and oxidative damage in male mice exposed to streptozotocin.
J Funct Foods. 2018; 44: 9-16. [https://doi.org/10.1016/j.jff.2018.02.024].
Mejía EG, Song YS, Heck CI, Ramírez-Mares M. Yerba mate tea (Ilex paraguariensis): Phenolics,
antioxidant capacity and in vitro inhibition of colon cancer cell proliferation. J Funct Foods. 2010; 2(1): 23-
[https://doi.org/10.1016/j.jff.2009.12.003].
Arçari DP, Bartchewsky Jr. W, Santos TW, Oliveira KA, Oliveira CC, Gotardo EM, et al. Antiinflammatory effects of yerba maté extract (Ilex paraguariensis) ameliorate insulin resistance in mice with
high fat diet-induced obesity. Molec Cell Endocrinol. 2011; 335(2): 110-115.
[https://doi.org/10.1016/j.mce.2011.01.003].
Puangpraphant S, Dia VP, De Mejia EG, Garcia G, Berhow MA, Wallig MA. Yerba mate tea and mate
saponins prevented azoxymethane‐induced inflammation of rat colon through suppression of NF‐κB
p65ser311 signaling via IκB‐α and GSK‐3β reduced phosphorylation. Biofactors. 2013; 39(4): 430-440.
[https://doi.org/10.1002/biof.1083].
Yu S, Wei SY, Liu Z, Zhang T, Xiang N, Fu H. Yerba mate (Ilex paraguariensis) improves
microcirculation of volunteers with high blood viscosity: A randomized, double blind, placebo-controlled trial.
Exp Gerontol. 2015; 62: 14-22. DOI: [https://doi.org/10.1016/j.exger.2014.12.016].
Veiga DTA, Bringhenti R, Copes R, Tatsch E, Moresco RN, Comim FV, et al. Protective effect of yerba
mate intake on the cardiovascular system: a post hoc analysis study in postmenopausal women. Braz J
Med Biol Res. 2018; 51(6): e7253. [https://doi.org/10.1590/1414-431X20187253].
Xu GH, Kim YH, Choo SJ, Ryoo IJ, Yoo JK, Ahn JS, et al. Chemical constituents from the leaves of
Ilex paraguariensis inhibit human neutrophil elastase. Arch Pharm Res. 2009; 32(9): 1215-1220.
[https://doi.org/10.1007/s12272-009-1905-7].
Conforti AS, Gallo ME, Saraví FD. Yerba Mate (Ilex paraguariensis) consumption is associated with
higher bone mineral density in postmenopausal women. Bone. 2012; 50(1): 9-13.
[https://doi.org/10.1016/j.bone.2011.08.029].
Ribeiro MC, Santos Â, Riachi LG, Rodrigues ACB, Coelho GC, Marcellini PS, et al. The effects of
roasted yerba mate (Ilex paraguariensis A. ST. Hil.) consumption on glycemia and total serum creatine
phosphokinase in patients with traumatic brain injury. J Funct Foods. 2017; 28: 240-245.
[https://doi.org/10.1016/j.jff.2016.11.024].
Zawadzki A, Arrivetti LO, Vidal MP, Catai JR, Nassu RT, Tullio RR, Cardoso DR, et al. Mate extract as
feed additive for improvement of beef quality. Food Res Int. 2017; 99: 336-347.
[https://doi.org/10.1016/j.foodres.2017.05.033].
Jose AJ, Leela NK, Zachariah TJ, Rema J. Evaluation of coumarin content and essential oil constituents
in Cinnamomum cassia (Nees & T. Nees) J. Presl. J Spices Arom Crops. 2019; 28(1): 43–51.
[https://doi.org/10.25081/josac.2019.v28.i1.5743].
Ferreira ACA, Souza PA. Aspectos nutricionais do jambu, Acmella oleracea: uma revisão bibliográfica.
In: Ciênc Aliment Pesq Aplic. Editora Poisson. 2023; 1. [https://doi.org/10.36229/978-65-5866-376-8].
Talaat SM. Role of Cinnamon Supplementation on Glycemic Markers, Lipid Profile and Weight Status
in Patients with Type II Diabetes. ARO-The Scient J Koya Univ. 2023; 11 (1): 1-9.
[https://doi.org/10.14500/aro.11041].
Araujo ECG, Silva TC, Cunha Neto EM, Favarin JAS, Silva JKG, Chagas KPT, Maia E, et al.
Bioeconomy in the Amazon: Lessons and gaps from thirty years of non-timber forest products research. J
Environ Manag. 2024; 370: 122420. [https://doi.org/10.1016/j.jenvman.2024.122420].
Silva LN, Oliveira EC, Baratto LC. Amazonian useful plants described in the book “Le Pays des
Amazones” (1885) of the Brazilian propagandist Baron de Santa-Anna Nery: a historical and ethnobotanical
perspective. J Ethnobiol Ethnomed. 2024; 20(1): 26. [https://doi.org/10.1186/s13002-024-00663-2].
Skendi A, Irakli M, Chatzopoulou P, Bouloumpasi E, Biliaderis CG. Phenolic extracts from solid wastes
of the aromatic plant essential oil industry: Potential uses in food applications. Food Chem Adv. 2022; 1:
[https://doi.org/10.1016/j.focha.2022.100065].
Ağagündüz D, Şahin TÖ, Yilmaz B, Ekenci KD, Duyar Özer Ş, Capasso R. Cruciferous vegetables and
their bioactive metabolites: from prevention to novel therapies of colorectal cancer. Evid Based Compl
Altern Med. 2022; 2022(1): 1534083. [https://doi.org/10.1155/2022/1534083].
Página da publicação
Publicado por (Instituto)