Pular para o conteúdo principal

Brazilian essential oil of Cymbopogon martinii: positive effects on inflammation-induced human fibroblasts and skin aging

Revista Fitos

This study evaluated the effects of essential oil from Cymbopogon martinii (CMEO) on lipopolysaccharide (LPS)-stimulated human fibroblast cells. Samples of CMEO were collected in Monte Verde, Minas Gerais, Brazil. The fibroblasts were cultured and stimulated by LPS (1 μg/mL), and incubated for 24 h at 37°C. The cytotoxicity of CMEO was evaluated by MTT assay and collagen concentration by Sirius red. Collagenase activity, hyaluronic acid, and the concentrations of IL-1β; IL-6; MCP-1 (CCL2), and MIP-1-α (CCL3) were evaluated by ELISA assay. The effect of CMEO on the expression of mRNA and secretion of MMP-1, MMP-2, and MMP-9 enzymes were evaluated by RT-qPCR and ELISA, respectively. CMEO was cytotoxic against fibroblasts, in which 10 μg/mL inhibited 50% of cell viability. When treated with CMEO, the fibroblasts produced more collagen and hyaluronic acid compared to control cells. When stimulated by LPS, fibroblasts exhibited higher production of IL-6, IL-1β, MCP-1, and MIP-1α compared to control cells. However, the treatment of fibroblasts with CMEO reduces cytokines secretion and enzyme expression. The study showed that CMEO modulates inflammation mediators and reduces metalloproteinase mRNA and secretion levels, making it a promising candidate for anti-aging and wound healing treatments.

DOI
10.32712/2446-4775.2024.1130
Identificação
Referências do artigo
Promila. A review on the medicinal and aromatic Plant Cymbopogon martinii (Roxb.) Watson (Palmarosa). Int J Chem Stud. 2018; 6(2): 1311-1315. ISSN: 2349–8528. [https://www.chemijournal.com/search/?q=A+review+on+the+medicinal]. Scherer R, Wagner R, Duarte MCT, Godoy HT. Composição e atividades antioxidante e antimicrobiana dos óleos essenciais de cravo-da-índia, citronela e palmarosa. Rev Bras Pl Med. 2009; 11: 442-49. ISSN 1516-0572. [https://doi.org/10.1590/S1516-05722009000400013]. Elshafie HS, Camele I. An Overview of the Biological Effects of Some Mediterranean Essential Oils on Human Health. Biomed Res Int. 2017. [https://doi.org/10.1155/2017/9268468]. Andrade BFMT, Conti BJ, Santiago KB, Fernandes Júnior A, Sforcin JM. Cymbopogon martinii essential oil and geraniol at noncytotoxic concentrations exerted immunomodulatory/anti-inflammatory effects in human monocytes. J Pharm Pharmacol. 2014; 66: 1491-6. [https://doi.org/10.1111/jphp.12278] [https://pubmed.ncbi.nlm.nih.gov/24934659/]. Wang J, Su B, Zhu H, Chen C, Zhao G. Protective effect of geraniol inhibits inflammatory response, oxidative stress and apoptosis in traumatic injury of the spinal cord through modulation of NF-κB and p38 MAPK. Exp Ther Med. 2016; 12: 3607–13. [https://doi.org/10.3892/etm.2016.3850] [https://pubmed.ncbi.nlm.nih.gov/28105094/]. Abdulkhaleq LA, Assi MA, Abdullah R, Zamri-Saad M, Taufiq-Yap YH, Hezmee MNM. The crucial roles of inflammatory mediators in inflammation: A review. Vet World. 2018; 11: 627–35. EISSN: 2231-0916. [https://doi.org/10.14202/vetworld.2018.627-635] [https://pubmed.ncbi.nlm.nih.gov/29915501/]. des Jardins-Park HE, Foster DS, Longaker MT. Fibroblasts and wound healing: an update. Regen Med. 2018; 13: 491-95. ISSN 1746-0751. [https://doi.org/10.2217/rme-2018-0073] [https://pubmed.ncbi.nlm.nih.gov/30062921/]. Gao H.M., Hong J.S. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 2008; 29: 357–65. [https://doi.org/10.1016/j.it.2008.05.002] [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794280/]. Raina VK, Srivastava SK, Aggarwal KK, Syamasundar KV, Khanuja SPS. Essential oil composition of Cymbopogon martinii from different places in India. Flavour Fragr J. 2003; 18: 312-15. [https://doi.org/10.1002/ffj.1222]. Prashar A, Hili P, Veness RG, Evans, CS. Antimicrobial action of palmarosa oil (Cymbopogon martinii) on Saccharomyces cerevisiae. Phytochemistry. 2003; 63: 569–575. [https://doi.org/10.1016/S0031-9422(03)00226-7] [https://pubmed.ncbi.nlm.nih.gov/12809717/]. Randriamiharisoa RP, Gaydou EM. Composition of palmarosa (Cymbopogon martinii) essential oil from Madagascar. J Agr Food Chem. 1987; 35: 62-6. ISSN: 0021-8561 [https://doi.org/10.1021/jf00073a015]. Oliveira PF, Alves JM, Damasceno JL, Oliveira RAM, Dias Júnior H, Crotti AEM et al. Cytotoxicity screening of essential oils in cancer cell lines. Rev Bras Farmacogn. 2015; 25: 183-8. ISSN: 1981-528X. [https://doi.org/10.1016/j.bjp.2015.02.009]. Elsayed EA, Sharaf-Eldin MA, Wadaan M. In vitro Evaluation of Cytotoxic Activities of Essential Oil from Moringa oleifera Seeds on HeLa, HepG2, MCF-7, CACO-2 and L929 Cell Lines. Asian Pac J Cancer Prev. 2015; 16: 4671-75. [https://doi.org/10.7314/APJCP.2015.16.11.4671]. Binic I, Lazarevic V, Ljubenovic M, Mojsa J, Sokolovic D. Skin Ageing: Natural Weapons and Strategies. Evid Based Compl Alter Medv. 2013; 1: 27248. [https://doi.org/10.1155/2013/827248]. Rittie L, Fisher GJ. UV-light-induced signal cascades and skin aging. Ageing Res Rev. 2002; 1: 705-20. [https://doi.org/10.1016/S1568-1637(02)00024-7]. Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: a key molecule in skin aging. Dermatoendocrinol. 2012; 4(3): 253-8. [https://doi.org/10.4161/derm.21923]. Tammi R, Pasonen-Seppanen S, Kolehmainen E, Tammi M. Hyaluronan synthase induction and hyaluronan accumulation in mouse epidermis following skin injury. J Invest Dermatol. 2005; 124(5): 898-905. [https://doi.org/10.1111/j.0022-202X.2005.23697.x]. West MD, Pereira-Smith OM, Smith JR. Replicative senescence of human skin fibroblasts correlates with a loss of regulation and overexpression of collagenase activity. Exp Cell Res. 1989: 184(1): 138-47. [https://doi.org/10.1016/0014-4827(89)90372-8]. Limtrakul P, Yodkeeree S, Thippraphan P. Anti-aging and tyrosinase inhibition effects of Cassia fistula flower butanolic extract. BMC Complement Altern Med. 2016; 16: 497. [https://doi.org/10.1186/s12906-016-1484-3]. Van Doren SR. Matrix metalloproteinase interactions with collagen and elastin. Matrix biology. Matrix Biol. 2015; 44-46: 224-31. [ https://doi.org/10.1016/j.matbio.2015.01.005 ]. Antonicelli F, Bellon G, Debelle L, Hornebeck W. Elastin-elastases and inflamm-aging. Curr Top Dev Biol. 2007; 79:99-155. [https://doi.org/10.1016/S0070-2153(06)79005-6]. Sundararaj KP, Samuvel DJ, Li Y, Sanders JJ, Lopes-Virella MF, Huang Y. Interleukin-6 released from fibroblasts is essential for up-regulation of matrix metalloproteinase-1 expression by U937 macrophages in coculture: cross-talking between fibroblasts and U937 macrophages exposed to high glucose. J biol chem. 2009; 284: 13714-24. [https://doi.org/10.1074/jbc.M806573200]. Schönbeck U, Mach F, Libby P. Generation of Biologically Active IL-1β by Matrix Metalloproteinases: A Novel Caspase-1-Independent Pathway of IL-1β. Processing J Immunol. 1998; 161(7): 3340-46. [https://doi.org/10.4049/jimmunol.161.7.3340]. Choi YA, Lee DJ, Lim HK, Jeong JH, Sonn JK, Kang SS, Baek SH. Interleukin-1β stimulates matrix metalloproteinase-2 expression via a prostaglandin E2-dependent mechanism in human chondrocytes. Exp Mol Med. 2004; 36(3): 226-32. [https://doi.org/10.1038/emm.2004.31]. Cheng CY, Kuo CT, Lin CC, Hsieh HL, Yang CM. IL-1beta induces expression of matrix metalloproteinase-9 and cell migration via a c-Src-dependent, growth factor receptor transactivation in A549 cells. Br J Pharmacol. 2010; 160(7): 1595–1610. [https://doi.org/10.1111/j.1476-5381.2010.00858.x] [https://pubmed.ncbi.nlm.nih.gov/20649564/]. Suzuki M, Hashizume M, Yoshida H, Shiina M, Mihara M. IL-6 and IL-1 synergistically enhanced the production of MMPs from synovial cells by up-regulating IL-6 production and IL-1 receptor I expression. Cytokine. 2010; 51(2): 178–83. [https://doi.org/10.1016/j.cyto.2010.03.017] [https://pubmed.ncbi.nlm.nih.gov/20403707/]. Robinson S, Scott K, Balkwill F. Chemokine stimulation of monocyte matrix metalloproteinase‐9 requires endogenous TNF‐α. Eur J Immunol. 2002; 32(2): 404-12. [https://doi.org/10.1002/1521-4141(200202)32:2404::AID-IMMU404>3.0.CO;2-X] [https://pubmed.ncbi.nlm.nih.gov/11813159/]. Knott A, Reuschlein K, Mielke HV. Natural Arctium lappa fruit extract improves the clinical signs of aging skin. J Cosmet Dermatol. 2008; 7(4): 281–89. [https://doi.org/10.1111/j.1473-2165.2008.00407.x]. Bhattamisra SK, Hooi LP, Shyan LP, Chieh LB, Candasamy M, Sahu PS. Effect of geraniol and clarithromycin combination against gastric ulcers induced by acetic acid and Helicobacter pylori in rats. Phcog Res. 2019; 11(4): 356-62. [https://doi.org/10.4103/pr.pr_21_19]. Wang J, Su B, Zhu H, Chen C, Zhao G. Protective effect of geraniol inhibits inflammatory response, oxidative stress and apoptosis in traumatic injury of the spinal cord through modulation of NF-κB and p38 MAPK. Exp Ther Med. 2016; 12(6): 3607–13. [https://doi.org/10.3892/etm.2016.3850] [https://pubmed.ncbi.nlm.nih.gov/28105094/]. Lei Y, Fu P, Jun X, Cheng P. Pharmacological Properties of Geraniol: A Review. Pl Med. 2019; 85(1): 48-55. [https://doi.org/10.1055/a-0750-6907] [https://pubmed.ncbi.nlm.nih.gov/30308694/]. Huang Y, Yang XL, Ni YH, Xu ZM. Geraniol suppresses proinflammatory mediators in phorbol 12-myristate 13-acetate with A23187-induced HMC-1 cells. Drug Des Devel Ther. 2018; 12: 2897-2903. [https://doi.org/10.2147/DDDT.S145702] [https://pubmed.ncbi.nlm.nih.gov/30254419/]. Chen W, Viljoen AM. Geraniol — A review of a commercially important fragrance material. S Afr J Bot. 2010; 76(4): 643-51. [https://doi.org/10.1016/j.sajb.2010.05.008]. Sinha S, Jothiramajayam M, Ghosh M, Mukherjee A. Evaluation of toxicity of essential oils palmarosa, citronella, lemongrass and vetiver in human lymphocytes. Food Chem Toxicol. 2014; 68:71-7. [https://doi.org/10.1016/j.fct.2014.02.036] [https://pubmed.ncbi.nlm.nih.gov/24650756/]. Raina V, Srivastava SK, Aggarwal KK, Syamasundar KV, Khanuja SPS. Essential oil composition of Cymbopogon martinii from different places in India. Flavour Fragr J. 2008: 18: 312–15. [https://doi.org/10.1002/ffj.1222].
Publicado por (Instituto)