Despite human immunodeficiency virus (HIV) latency still being a key obstacle to permanent cure of infection, several synthetic and natural compounds have already been able to efficiently activate HIV-LTR (long terminal repeat), responsible for re-activating the latent virus. In this study, we report that dichloromethane extract of Jatropha gossypiifolia species (JGDM) has dual effect for inhibition of HIV-1 infection and agonist of protein kinase C (PKC). Using MT-4 cells infected with HIV-1 NL4.3, we found that JGDM is able to decrease HIV-1 replication, with an EC50 of 17.96 μg/mL and promotes reactivation of latent provirus in J-Lat 8.4 and 10.6 cells by 4% and 32%, respectively. In addition, the CD4 expression test showed a 66% reduction of CD4 molecules from surface cells. It was also observed that PKC inhibitor, GÖ6983 inhibited the reactivation and CD4 downregulation activity, suggesting that bioactive compound present in the extract acts through the PKC pathway. In conclusion, the dichloromethane extract of J. gossypiifolia showed dual effect with anti-HIV potential, probably by promoting downregulation of CD4 molecules from cell surface, and potential for reactivating latent HIV-1 through PKC pathway.
Dual effect of Jatropha gossypiifolia L. extract in HIV-1 infection and latent virus reactivation through PKC pathway
Revista Fitos
DOI
10.32712/2446-4775.2025.1749
Autores
Edição
Identificação
Referências do artigo
Antiretroviral Therapy Cohort C. Survival of HIV-positive patients starting antiretroviral therapy between 1996 and 2013: a collaborative analysis of cohort studies. Lancet HIV. 2017; 4(8): e349-e356. [https://doi.org/10.1016/S2352-3018(17)30066-8] [http://www.ncbi.nlm.nih.gov/pmc/articles/pmc5555438/].
Brady MT, Oleske JM, Williams PL, Elgie C, Mofenson LM, Dankner WM, et al. Declines in mortality rates and changes in causes of death in HIV-1 infected children during the HAART era. J Acquir Immune Defic Syndr. 2010; 53(1): 86-94. [https://doi.org/10.1097/qai.0b013e3181b9869f] [http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2801894/].
Murray AJ, Kwon KJ, Farber DL, Siliciano RF. The latent reservoir for HIV-1: How immunologic memory and clonal expansion contribute to HIV-1 persistence. J Immunol. 2016; 197(2): 407-17. [https://doi.org/10.4049/jimmunol.1600343] [http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4936486/].
Archin NM, Margolis DM. Emerging strategies to deplete the HIV reservoir. Curr Opin Infect Dis. 2014; 27(1): 29–35. [https://doi.org/10.1097%2FQCO.0000000000000026] [http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4031321/].
Deeks SG. HIV: shock and kill. Nature. 2012; 487(7408): 439–440. [https://doi.org/10.1038/487439a].
Rasmussen TA, Tolstrup M, Sogaard OS. Reversal of latency as part of a cure for HIV-1. Trends Microbiol. 2016; 24: 90–97. [https://doi.org/10.1016/j.tim.2015.11.003].
Jiang G, Dandekar S. Targeting NF-kappaB signaling with protein kinase C agonists as an emerging strategy for combating HIV latency. AIDS Res Hum Retrovir. 2015; 31(1): 4-12. [https://doi.org/10.1089/aid.2014.0199] [http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4287114/].
Jiang G, Mendes EA, Kaiser P, Wong DP, Tang Y, Cai I, et al. Synergistic reactivation of latent HIV expression by ingenol-3-angelate, PEP005, targeted NF-κB signaling in combination with JQ1 induced p-TEFb activation. PLoS Pathog. 2015; 11(7): e1005066. [https://doi.org/10.1371/journal.ppat.1005066] [http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4520526/].
Abreu CM, Price SL, Shirk EN, Cunha RD, Pianowski LF, Clements JE, et al. Dual role of novel ingenol derivatives from Euphorbia tirucalli in HIV replication: Inhibition of de novo infection and activation of viral LTR. PLoS One. 2014; 9(5): 1-14. [https://doi.org/10.1371/journal.pone.0097257]. [http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4020785/].
Mehla R, Bivalkar-Mehla S, Zhang R, Handy I, Albrecht H, Giri S, et al. Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner. Plos One. 2010; 5(6): 1-15. [https://doi.org/10.1371/journal.pone.0011160]. [http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2886842/].
Zhao M, De Crignis E, Rokx C, Verbon A, van Gelder T, Mahmoudi T, et al. T cell toxicity of HIV latency reversing agents. Pharmacol Res. 2019; 139: 524-534. [https://doi.org/10.1016/j.phrs.2018.10.023].
Félix-Silva J, Giordani RB, Silva-Jr AA, Zucolotto SM, Fernandes-Pedrosa MF. Jatropha gossypiifolia L. (Euphorbiaceae): A review of traditional uses, phytochemistry, pharmacology, and toxicology of this medicinal plant. Evid Based Complement Alternat Med. 2014; 2014(369204): 1-32. [https://doi.org/10.1155/2014/369204] [http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4070477/].
Falodun A, Kragl U, Touem SM, Villinger A, Fahrenwaldt T, Langer P. A novel anticancer diterpenoid from Jatropha gossypifolia. Nat Prod Commun. 2012; 7(2): 151-152. [https://doi.org/10.1177%2F1934578X1200700204].
Valadão ALC, Abreu CM, Dias JZ, Arantes P, Verli H, Tanuri A, et al. Natural plant alkaloid (Emetine) inhibits HIV-1 replication by interfering with reverse transcriptase activity. Molecules. 2015; 20(6): 11474-11489. [https://doi.org/10.3390/molecules200611474] [http://www.ncbi.nlm.nih.gov/pmc/articles/pmc6272240/].
Andersen RJ, Ntie-Kang F and Tietjen I. Natural product-derived compounds in HIV suppression, remission, and eradication strategies. Antiviral Res. 2018; 158: 63-77. [https://doi.org/10.1016/j.antiviral.2018.07.016].
Reuse S, Calao M, Kabeya K, Guiguen A, Gatot JS, Quivy V, et al. Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: Implications for treatment of latent infection. Plos One. 2009; 4(6): e6093. [https://doi.org/10.1371/journal.pone.0006093] [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699633/].
Pérez M, Vinuesa AG, Sanchez-Duffhues G, Marquez N, Bellido ML, Muñoz-Fernandez A, et al. Bryostatin-1 synergizes with histone deacetylase inhibitors to reactivate HIV-1 from latency. Curr HIV Res. 2010; 8(6): 418-429. [https://doi.org/10.2174/157016210793499312].
Laird GM, Bullen CK, Rosenbloom DIS, Martin AR, Hill AL, Durand CM, et al. Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. J Clin Invest. 2015; 125(5): 1901-1912. [https://doi.org/10.1172%2FJCI80142] [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463209/].
Banerjee S, Nau S, Hochwald SN, Xie H, Zhang J. Anticancer properties and mechanisms of botanical derivatives. Phytomed Plus. 2023; 3(1): 100396. [https://doi.org/10.1016/j.phyplu.2022.100396].
Kollár P, Rajchard J, Balounová Z, Pazourek J. Marine natural products: Bryostatins in preclinical and clinical studies. Pharm Biol. 2014; 52(2): 237-242. [https://doi.org/10.3109/13880209.2013.804100].
Bertino EM, Otterson GA. Romidepsin: A novel histone deacetylase inhibitor for cancer. Expert Opin Investig Drugs. 2011; 20(8): 1151-1158. [https://doi.org/10.1517/13543784.2011.594437].
Søgaard OS, Graversen ME, Leth S, Olesen R, Brinkmann CR, Nisse SK, et al. The depsipeptide romidepsin reverses HIV-1 latency in vivo. Plos Pathog. 2015; 11(9): e1005142. [https://doi.org/10.1371/journal.ppat.1005142] [http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4575032/].
Dahake R, Roy S, Patil D, Rajopadhye S, Chowdhary A, Deshmukh RA. Potential anti-HIV activity of Jatropha curcas Linn. leaf extracts. J Antivir Antiretrovir. 2013; 5: 7. [https://doi.org/10.4172/jaa.1000082].
Avila L, Perez M, Sanchez-Duffhues G, Hernandez-Galan R, Munoz E, Cabezas F, et al. Effects of diterpenes from latex of Euphorbia lactea and Euphorbia laurifolia on human immunodeficiency virus type 1 reactivation. Phytochemistry. 2010; 71(2-3): 243-248. [https://doi.org/10.1016/j.phytochem.2009.10.005].
De la Torre-Tarazona HE, Jiménez R, Bueno P, Camarero S, Román L, Fernández-García JL, et al. 4-Deoxyphorbol inhibits HIV-1 infection in synergism with antiretroviral drugs and reactivates viral reservoirs through PKC/MEK activation synergizing with vorinostat. Biochem Pharmacol. 2020; 177: 113937. [https://doi.org/10.1016/j.bcp.2020.113937].
Yang H, Li X, Yang X, Lu P, Wang Y,Jiang Z, et al. Dual effects of the novel ingenol derivatives on the acute and latent HIV-1 infections. Antiviral Res. 2019; 169: 104555. [https://doi.org/10.1016/j.antiviral.2019.104555].
Kazi JU, Kabir NN, Rönnstrand L. Protein kinase C (PKC) as a drug target in chronic lymphocytic leukemia. Med Oncol. 2013; 30(4): 757. [https://doi.org/10.1007/s12032-013-0757-7].
Wu-Zhang AX, Newton AC. Protein kinase C pharmacology: refining the toolbox. Biochem J. 2013; 452(2): 195-209. [https://doi.org/10.1042/bj20130220] [http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4079666/].
Hezareh M, Moukil MA, Szanto I, Pondarzewski M, Mouche S, Cherix N, et al. Mechanisms of HIV receptor and co-receptor down-regulation by prostratin: role of conventional and novel PKC isoforms. Antivir Chem Chemother. 2004; 15: 207-222. [https://doi.org/10.1177/095632020401500404].
Harris TE, Persaud SJ, Jones PM. Atypical isoforms of pKc and insulin secretion from pancreatic beta-cells: evidence using Gö6976 and Ro31-8220 as PKC inhibitors. Biochem Biophys Res Commun. 1996; 227(3): 672-676. [https://doi.org/10.1006/bbrc.1996.1567].
Biancotto A, Grivel JC, Gondois-Rey F, Bettendroffer L, Vigne R, Brown S, et al. Dual role of prostratin in inhibition of infection and reactivation of human immunodeficiency vírus from latency in primary blood lymphocytes and lymphoid tissue. J Virol. 2004; 78(19): 10507-10515. [https://doi.org/10.1128%2FJVI.78.19.10507-10515.2004] [https://pubmed.ncbi.nlm.nih.gov/15367617].
Bedoya LM, Márquez N, Martínez N, Gutiérrez-Eisman S, Álvarez A, Calzado MA, et al. SJ23B, a jatrophane diterpene activates classical PKCs and displays strong activity against HIV in vitro. Biochem Pharmacol. 2009; 77: 965-978. [https://doi.org/10.1016/j.bcp.2008.11.025].
Díaz L, Martínez-Bonet M, Sánchez J, Fernández-Pineda A, Jiménez JL, Muñoz E, et al. Bryostatin activates HIV-1 latent expression in human astrocytes through a PKC and NF-ĸB-dependent mechanism. Sci Rep. 2015; 5: 12442. [https://doi.org/10.1038/srep12442] [http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4510492/].
Klasse PJ. The molecular basis of HIV entry. Cell Microbiol. 2012; 14(8): 1183-1192. [https://doi.org/10.1111/j.1462-5822.2012.01812.x] [http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3417324/].
Pelchen-Matthews A, Parsons IJ, Marsh M. Phorbol ester-induced downregulation of CD4 is a multistep process involving dissociation from p56lck, increased association with clathrin-coated pits, and altered endosomal sorting. J Exp Med. 1993; 178(4): 1209-1222. [https://doi.org/10.1084/jem.178.4.1209] [http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2191214/].
Nothias-Scaglia LF, Pannecouque C, Renucci F, Delang L, Neyts J, Roussi F, et al. Antiviral activity of diterpene esters on Chikungunya virus and HIV replication. J Nat Prod. 2015; 78(6): 1277-1283. [https://doi.org/10.1021/acs.jnatprod.5b00073].
Página da publicação
Publicado por (Instituto)