Costus spicatus Swartz exhibits notable biological properties due to its rich content of flavonoids and saponins, suggesting promising anti-inflammatory, antinociceptive, and antimicrobial properties. This study investigated the cytotoxic effects and molecular diversity of Costus spicatus extracts. Cytotoxicity assays revealed varying sensitivities across leaf, stem, and rhizome extracts, with ethanolic extracts generally exhibiting higher potency. Tandem mass spectrometry analysis identified eleven metabolites, including polyphenols like quercetin and rutin. Higher levels of polyphenols were observed in leaf and stem extracts compared to rhizomes. Among these plant parts, the leaves emerged as the richest source of flavonoids, constituting 45.83% of the total flavonoid content. Hierarchical clustering analysis highlighted dissimilarities between extract types. Overall, Costus spicatus extracts displayed cytotoxic effects against tested cell lines, with ethanolic extracts showing greater potency. This comprehensive analysis provides valuable insights into the potential medicinal applications of Costus spicatus and its molecular composition.
Cytotoxicity assessment and molecular diversity through mass spectrometry analysis of Costus spicatus
Revista Fitos
DOI
10.32712/2446-4775.2025.1851
Edição
Identificação
Referências do artigo
Manfred L. 7000 Recetas Botanicas a Base de 1,300. Pl Medicin Americ. Buenos Aires: Editorial Kier. 1947.
Carriconde C, Morais D, Von Fritschen M, et al. Pl Medicin Aliment. Olinda, Brazil: Centro Nordestino de Medicina Popular. Universidade Federal Rural de Pernambuco. 1996.
da Silva BP, Bernardo RR, Parente JP. Flavonol glycosides from Costus spicatus. Phytochemistry. 2000; 53(1): 87-92. [https://doi.org/10.1016/S0031-9422(99)00441-0].
Silva BP, Bernardo RR, Parente JP. A new steroidal saponin from the rhizomes of Costus spicatus. Pl Med. 1999; 65(03): 285-287. [https://doi.org/10.1055/s-2006-960782].
Azevedo LFP, Faria TSA, Pessanha FF, Araujo MF, Lemos GCS. Triagem fitoquímica e atividade antioxidante de Costus spicatus. Rev Bras Pl Medic. 2014; 16: 209-215. [https://doi.org/10.1590/S1516-05722014000200007].
Devendran G, Sivamani G. Phytochemical analysis of leaf extract of plant Costus spicatus by GCMS method. J Drug Deliv Therap. 2015; 24-26. [https://doi.org/10.22270/jddt.v5i4.1160].
Paes LDS, Mendonça MS, Casas LL. Aspectos Estruturais e fitoquímicos de partes vegetativas de Costus spicatus (Costaceae). Rev Bras Pl Medic. 2013; 15: 380-390. [https://doi.org/10.1590/S1516-05722013000300011].
Kumar A, Maurya AK, Chand G, Agnihotri VK. Comparative metabolic profiling of Costus speciosus leaves and rhizomes using NMR, GC-MS and UPLC/ESI-MS/MS. Nat Prod Res. 2018; 32(7): 826-833. [https://doi.org/10.1080/14786419.2017.1365069].
Quintans Junior LJ, Santana MT, Melo MS, de Sousa DP, Santos IS, Siqueira RS, et al. Antinociceptive and anti-inflammatory effects of Costus spicatus in experimental animals. Pharm Biol. 2010; 48(10): 1097-1102. [https://doi.org/10.3109/13880200903501822].
Fang SH, Rao YK, Tzeng YM. Inhibitory effects of flavonol glycosides from Cinnamomum osmophloeum on inflammatory mediators in LPS/IFN-γ-activated murine macrophages. Bioorg Med Chem. 2005; 13(7): 2381-2388. [https://doi.org/10.1016/j.bmc.2005.01.050].
Maleki-Dizaji N, Fathiazad F, Garjani A. Antinociceptive properties of extracts and two flavonoids isolated from leaves of Danae racemosa. Arch Pharm Res. 2007; 30: 1536-1542. [https://doi.org/10.1007/BF02977322].
Silva DN, Gonçalves MJ, Amaral MT, Batista MT. Antifungal activity of a flavonoid-rich fraction from Costus spicatus leaves against dermatophytes. Pl Med. 2008; 74(09): PA90. [https://doi.org/10.1055/s-0028-1084088].
Domínguez I, Frenich AG, Romero-González R. Mass spectrometry approaches to ensure food safety. Anal Methods. 2020; 12: 1148–1162. [https://doi.org/10.1039/C9AY02681A].
Lu H, Zhang H, Chingin K, Xiong J, Fang X, Chen H. Ambient mass spectrometry for food science and industry. TrAC - Trends Anal Chem. 2018; 107: 99–115. [https://doi.org/10.1016/j.trac.2018.07.017].
Jorge TF, Rodrigues JA, Caldana C, Schmidt R, Dongen JT, et al. Mass spectrometry‐based plant metabolomics: Metabolite responses to abiotic stress. Mass Spectrom Rev. 2016; 35: 620–649. [https://doi.org/10.1002/mas.21449].
Martino R, Barreiro Arcos ML, Peralta I, Marrassini C, Saint Martin EM, Cogoi L, et al. Antiproliferative activity of aqueous and polyphenol-rich extracts of Larrea divaricata Cav. on a melanoma cell line. Nat Prod Res. 2022; 36(17): 4425-4428. [https://doi.org/10.1080/14786419.2021.1980789].
Página da publicação
Publicado por (Instituto)