Pular para o conteúdo principal

Atividade antimicobacteriana e antibiofilme do extrato da folha de Bauhinia forficata subsp. pruinosa

Revista Fitos

Este estudo investigou o efeito do extrato da folha de Bauhinia forficata subsp. pruinosa sobre quatro espécies de micobactérias e seus biofilmes, bem como seu conteúdo fenólico. Foram realizados ensaios fitoquímicos (conteúdo total de fenóis e flavonoides, cromatográfia)  avaliações microbiológicas (concentração inibitória mínima – CIM; concentração bactericida mínima – CBM, curva de morte bacteriana, ensaio de microdiluição em placa e avaliação da atividade antibiofilme). A rutina foi identificada como  principal composto. O extrato apresentou CIM de 0,31 mg/mL para todas as cepas testadas; entretanto, Mycobacteroides massiliense apresentou menor suscetibilidade, considerando seu valor de CBM e comportamento na curva de morte bacteriana. Além disso, o extrato inibiu e erradicou biofilmes de M. massiliense e Mycolicibacterium fortuitum e erradicou os de Mycobacteroides abscessus e Mycolicibacterium smegmatis quando aplicado na concentração CIM. O extrato também apresentou efeito aditivo contra M. abscessus e M. smegmatis em combinação com claritromicina e contra M. massiliense quando combinado com imipenem. Este estudo é o primeiro a relatar a atividade antimicobacteriana e antibiofilme in vitro do extrato da folha de B. forficata subsp. pruinosa. Os efeitos observados são parcialmente atribuídos à rutina. Nossos achados sugerem potencial uso como adjuvante no tratamento de infecções micobacterianas, abordando resistência a antibióticos.

DOI
10.32712/2446-4775.2025.1836
Identificação
Referências do artigo
Gupta RS, Lo B, Son J. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Front Microbiol. 2018; 13(9): 67. Available at: [https://doi.org/10.3389/fmicb.2018.00067]. Koo H, Falsetta ML, Klein MI. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res. 2013; 92(12): 1065-73. Available at: [https://doi.org/10.1177/0022034513504218]. Barai L, Saha MR, Rahman T, Sukanya M, Ferdous J, Khanduker A, et al. Pattern of rapidly growing mycobacteria (RGM) species isolated from clinical samples: A 10-year retrospective study in a tertiary care hospital of Bangladesh. Indian J Med Microbiol. 2024; 5(53): 100756. Available at: [https://doi.org/10.1016/j.ijmmb.2024.100756]. Ahmad F, Anwar F, Hira S. Review on medicinal importance of Fabaceae family. PhOL. 2016; 3: 151-6. Available at: [https://pharmacologyonline.silae.it/files/archives/2016/vol3/PhOL_2016_3_A023_47_Ahmad.pdf]. Jung EP, de Freitas BP, Kunigami CN, Moreira DL, de Figueiredo NG, Ribeiro LO, et al. Bauhinia forficata Link Infusions: Chemical and Bioactivity of Volatile and Non-Volatile Fractions. Molecules. 2022; 27(17): 5415. Available at: [https://doi.org/10.3390/molecules27175415]. Lorenzi H, Matos FJA. Medicinal plants in Brazil: native and exotic. 3th ed. Nova Odessa: Plantarum Botanical Garden; 2021. Miceli N, Buongiorno LP, Celi MG, Cacciola F, Dugo P, Donato P, et al. Role of the flavonoid-rich fraction in the antioxidant and cytotoxic activities of Bauhinia forficata Link. (Fabaceae) leaves extract. Nat Prod Res. 2016; 30(11): 1229-39. Available at: [https://doi.org/10.1080/14786419.2015.1050671]. De Sousa JN, de Oliveira ABM, Ferreira AK, Silva E, de Sousa LMS, França Rocha MC, et al. Modulation of the resistance to norfloxacin in Staphylococcus aureus by Bauhinia forficata link. Nat Prod Res. 2021; 35(4): 681-5. Available at: [https://doi.org/10.1080/14786419.2019.1590714]. Ferreira-Filho JCC, Marre ATO, De Sá Almeida JS, Lobo LA, Farah A, Romanos MTV, et al. Therapeutic Potential of Bauhinia forficata Link in Dental Biofilm Treatment. J Med Food. 2020; 23(9): 998–1005. Available at: [https://doi.org/10.1089/JMF.2019.0277]. Silva FLL, Scotti AS, Garcia ALH, Lemes MLB, Grivicich I, Reis GM, et al. Toxicological potential of Aloysia gratissima: Insights from chemical analysis and in vitro studies. J Ethnopharmacol. 2023;314: 116614. Available at: [https://doi.org/10.1016/J.JEP.2023.116614]. Menezes APS, Silva J, Fisher C, Silva FR, Reyes JM, Picada JN, et al. Chemical and toxicological effects of medicinal Baccharis trimera extract from coal burning area. Chemosphere. 2016; 146: 396-404. Available at: [https://doi.org/10.1016/J.CHEMOSPHERE.2015.12.028]. Rossi GG, Guterres KB, Moreira KS, Burgo TAL, de Campos MMA, Iglesias BA. Photo-damage promoted by tetra-cationic palladium (II) porphyrins in rapidly growing mycobacteria. Photodiagnosis Photodyn Ther. 2021; 36: 102514. Available at: [https://doi.org/10.1016/J.PDPDT.2021.102514]. Nikolic I, Vukovic D, Gavric D, Cvetanovic J, Aleksic Sabo V, Gostimirovic S, et al. An Optimized Checkerboard Method for Phage-Antibiotic Synergy Detection. Viruses. 2022; 14(7): 1542. Available at: [https://doi.org/10.3390/V14071542/S1]. Bonez PC, Agertt VA, Rossi GG, Siqueira FS, Siqueira JD, Marques LL, et al. Sulfonamides complexed with metals as mycobacterial biofilms inhibitors. J Clin Tuberc Other Mycobact Dis. 2021; 23: 100217. Available at: [https://doi.org/10.1016/J.JCTUBE.2021.100217]. Sayago C, Camargo V, Barbosa F, Gularte C, Pereira G, Miotto S, et al. Chemical composition and in vitro antioxidant activity of hydro-ethanolic extracts from Bauhinia forficata subsp. pruinosa and B. variegata. Acta Biol Hung. 2013; 64(1): 21-33. Available at: [https://doi.org/10.1556/ABIOL.64.2013.1.3]. Franco RR, Alves VHM, Zabisky LFR, Justino AB, Martins MM, Saraiva AL, et al. Antidiabetic potential of Bauhinia forficata Link leaves: a non-cytotoxic source of lipase and glycoside hydrolases inhibitors and molecules with antioxidant and antiglycation properties. Biomed Pharmacother. 2020; 123: 109798. Available at: [https://doi.org/10.1016/J.BIOPHA.2019.109798]. Ecker A, Vieira FA, Prestes AS, Dos Santos MM, Ramos A, Ferreira RD, et al. Effect of Syzygium cumini and Bauhinia forficata aqueous-leaf extracts on oxidative and mitochondrial parameters in vitro. EXCLI J. 2015; 14: 1219-31. Available at: [https://doi.org/10.17179/EXCLI2015-576]. Sotiropoulou ΝSD, Flampouri E, Skotti E, Pappas C, Kintzios S, Tarantilis PA. Bioactivity and toxicity evaluation of infusions from selected Greek herbs. Food Biosci. 2020; 35: 100598. Available at: [https://doi.org/10.1016/J.FBIO.2020.100598]. Farag MA, Sakna ST, El-Fiky NM, Shabana MM, Wessjohann LA. Phytochemical, antioxidant and antidiabetic evaluation of eight Bauhinia L. species from Egypt using UHPLC–PDA–qTOF-MS and chemometrics. Phytochemistry. 2015; 119: 41-50. Available at: [https://doi.org/10.1016/J.PHYTOCHEM.2015.09.004]. Roy A, Khan A, Ahmad I, Alghamdi S, Rajab BS, Babalghith AO, et al. Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications. Biomed Res Int. 2022; 2022: 5445291. Available at: [https://doi.org/10.1155/2022/5445291]. Wang Z, Ding Z, Li Z, Ding Y, Jiang F, Liu J. Antioxidant and antibacterial study of 10 flavonoids revealed rutin as a potential antibiofilm agent in Klebsiella pneumoniae strains isolated from hospitalized patients. Microb Pathog. 2021; 159: 105121. Available at: [https://doi.org/10.1016/J.MICPATH.2021.105121]. Cheng A, Sheng WH, Huang YC, Sun HY, Tsai YT, Chen ML, et al. Prolonged postprocedural outbreak of Mycobacterium massiliense infections associated with ultrasound transmission gel. Clin Microbiol Infect. 2016; 22(4): 382.e1-382.e11. Available at: [https://doi.org/10.1016/J.CMI.2015.11.021]. Koh WJ, Jeong BH, Jeon K, Kim SY, Park KU, Park HY, et al. Oral Macrolide Therapy Following Short-term Combination Antibiotic Treatment of Mycobacterium massiliense lung disease. Chest. 2016; 150(6): 1211-21. Available at: [https://doi.org/10.1016/J.CHEST.2016.05.003]. Donohue MJ. Epidemiological risk factors and the geographical distribution of eight Mycobacterium species. BMC Infect Dis. 2021; 21(1): 258. available at: [https://doi.org/10.1186/S12879-021-05925-Y]. Cowman S, Van Ingen J, Griffith DE, Loebinger MR. Non-tuberculous mycobacterial pulmonary disease. Eur Respir J. 2019; 54(1): 1900250. Available at: [https://doi.org/10.1183/13993003.00250-2019]. Teng R, Dick T. Isoniazid resistance of exponentially growing Mycobacterium smegmatis biofilm culture. FEMS Microbiol Lett. 2003; 227(2): 171-4. Available at: [https://doi.org/10.1016/S0378-1097(03)00584-6]. Shivaprasad DP, Taneja NK, Lakra A, Sachdev D. In vitro and in situ abrogation of biofilm formation in E. coli by vitamin C through ROS generation, disruption of quorum sensing and exopolysaccharide production. Food Chem. 2021; 341(1): 128171. Available at: [https://doi.org/10.1016/J.FOODCHEM.2020.128171]. Peng LY, Yuan M, Cui ZQ, Wu ZM, Yu ZJ, Song K, et al. Rutin inhibits quorum sensing, biofilm formation and virulence genes in avian pathogenic Escherichia coli. Microb Pathog. 2018; 119: 54–9. Available at: [https://doi.org/10.1016/J.MICPATH.2018.04.007]. Harada T, Akiyama Y, Kurashima A, Nagai H, Tsuyuguchi K, Fujii T, et al. Clinical and Microbiological Differences between Mycobacterium abscessus and Mycobacterium massiliense lung diseases. J Clin Microbiol. 2012; 50(11): 3556-61. Available at: [https://doi.org/10.1128/JCM.01175-12]. Deepika MS, Thangam R, Sakthidhasan P, Arun S, Sivasubramanian S, Thirumurugan R. Combined effect of a natural flavonoid rutin from Citrus sinensis and conventional antibiotic gentamicin on Pseudomonas aeruginosa biofilm formation. Food Control. 2018; 90: 282-94. Available at: [https://doi.org/10.1016/J.FOODCONT.2018.02.044].
Publicado por (Instituto)