Pular para o conteúdo principal

In silico search of Myrcia tomentosa (Myrtaceae) antineoplastic potential

Revista Fitos

Myrcia tomentosa, popularly known as “guava-brava”, belongs to the Myrtaceae family, widely used in folk medicine to treat various diseases. There already are studies proving the effectiveness of several of its components. However, there are few specific articles on the biological potential of M. tomentosa compounds. The aim of this study was to evaluate the potential antineoplastic activity from M. tomentosa. For these, we performed in silico analysis to evaluate pharmacological and toxicological activities, besides the interaction between M. tomentosa molecules with the human targets from redocking analysis. Our results showed that α-cadinol was the highest score molecule between the 11 compounds present in screening analysis. Among its possible actions, antineoplastic activity and interaction with cytochrome P450 19 A1 were found. This cytochrome was related to breast cancer and is the main target of the antineoplastic drugs used in this cancer’s treatment. Therefore, we believe that α-cadinol should be considered in future in vitro and in vivo assays against breast cancer.

DOI
10.32712/2446-4775.2022.1137
Identificação
Referências do artigo
Imatomi M, Novaes P, Matos AP, Gualtieri SCJ, Molinillo JMG, Lacret R et al. Phytotoxic effect of bioactive compounds isolated from Myrcia tomentosa (Myrtaceae) leaves. Biochem Syst Ecol. 2013; 46: 29-35. ISSN 0305-1978. [CrossRef] [Link]. Da Silva FAS, De Paula JAM, Dos Santos PA, Oliveira LDAR, Oliveira GDAR, Liao LM, et al. Phytochemical analysis and antimicrobial activity of Myrcia tomentosa (Aubl.) DC. leaves. Molecules. 2017; 22(7): 1-10. ISSN 1420-3049. [CrossRef] [PubMed]. Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ. Sistemática Vegetal - Um Enfoque Filogenético. Taxon. 2009. ISBN-13: 978-8536317557. Borges LL, Alves SF, Sampaio BL, Conceição EC, Bara MTF, Paula JR. Environmental factors affecting the concentration of phenolic compounds in Myrcia tomentosa leaves. Braz J Pharmacogn. 2013;23(2):230–8. ISSN 0102-695X. [CrossRef]. Flora do Brasil 2020. Jardim Botânico do Rio Janeiro. 2018. [Link]. Yadegarinia D, Gachkar L, Rezaei MB, Taghizadeh M, Astaneh SA, Rasooli I. Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochemistry. 2006 June; 67(12): 1249-1255. ISSN 0031-9422. [CrossRef]. Andrade GS, Guimarães AG, Santana MT, Siqueira RS, Passos LO, Machado SMF et al. Phytochemical screening, antinociceptive and anti-inflammatory effects of the essential oil of Myrcia pubiflora in mice. Braz J Pharmacogn. 2012; 22(1): 181-188. ISSN 0102-69X. [CrossRef]. Ferreira EA, Gris EF, Rebello JM, Correia JFG, De Oliveira LFS, Filho DW et al. The 2′,4′,6′-trihydroxyacetophenone isolated from Myrcia multiflora has antiobesity and mixed hypolipidemic effects with the reduction of lipid intestinal absorption. Pl Med. 2011 Sep; 77(14): 1569-74. ISSN 0032-0943. [CrossRef] [PubMed]. Ferreira ACF, Neto JC, Da Silva ACM, Kuster RM, Carvalho DP. Inhibition of thyroid peroxidase by Myrcia uniflora flavonoids. Chem Res Toxicol. 2006 Mar; 19(3): 351-5. ISSN 1520-5010. [CrossRef] [PubMed]. Dexheimer G, Pozzobon A. Atividade biológica de plantas da família Myrtaceae: revisão sistemática de artigos entre 1989 e 2015. Rev Cuba Pl Med. 2017; 22(2). ISSN 1028-4796. [Link]. Newman D, Cragg G, Snader K. The influence of natural products upon drug discovery. Nat Prod Rep. 2000; 17(3): 215-34. ISSN 1460-4752. [CrossRef]. Newman D, Cragg G. Natural products as sources of new drugs over 30 years from 1981 to 2010. J Nat Prod. 2012; 75(3): 311-35. ISSN 1520-6025. [CrossRef]. Sá FAS. Morfoanatomia, composição química do óleo essencial e atividade antimicrobiana das folhas e casca do caule de Myrcia tomentosa (Aubl.) DC. Goiânia, 2010. 117f. Dissertação de Mestrado [Programa de Pós-graduação em Ciências Farmacêuticas] - Universidade Federal de Goiás, UFG, Goiânia, 2010. Takao LK, Imatomi M, Gualtieri SCJ. Antioxidant activity and phenolic content of leaf infusions of Myrtaceae species from Cerrado (Brazilian Savanna). Brazilian J Biol. 2015; 75(4): 948-52. ISSN 1678-4375. [CrossRef] [Link]. Lagunin A, Stepanchikova A, Filimonov D, Poroikov V. PASS: Prediction of activity spectra for biologically active substances. Bioinformatics. 2000; 16(8): 747-8. ISSN 1754-7431. [CrossRef]. Sadym A, Lagunin A, Filimonov D, Poroikov V. Prediction of biological activity spectra via the Internet. SAR QSAR Environm Res. 2003. ISSN 1029-046X. [CrossRef]. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018; 46(W1): W257-63. ISSN 1362-4962. [CrossRef] [PubMed]. Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R. ProTox: A web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res. 2014. Jul;42(W1): W53-8. ISSN 1362-4962. [CrossRef] [PubMed]. Daina A, Michielin O, Zoete V. SwissADME : a free web tool to evaluate pharmacokinetics, drug- likeness and medicinal chemistry friendliness of small molecules. Nat Publ Gr. 2017 March 3; 7: 1-13. ISSN 2045-2322. [CrossRef] [PubMed]. Jarrahpour A, Fathi J, Mimouni M, Hadda T Ben, Sheikh J, Chohan Z et al. Petra, Osiris and Molinspiration (POM) together as a successful support in drug design: Antibacterial activity and biopharmaceutical characterization of some azo Schiff bases. Med Chem Res. 2012; 21(8): 1984-90. ISSN 1554-8120. [CrossRef]. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000 Jul-Aug; 44(1): 235-249. ISSN 1056-8719. [CrossRef] [PubMed]. Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014 Jul 1; 42(W1): W32-W38. ISSN 1362-4962. [CrossRef] [PubMed]. Verdonk M, Cole J, Hartshorn M, Murray C, Taylor R. Improved protein-ligand docking using GOLD. Proteins Struct Funct Genet. 2003 Sep 1; 52(4): 609-23. ISSN 1097-0134. [CrossRef] [PubMed]. Ghosh D, Egbuta C, Lo J. Testosterone complex and non-steroidal ligands of human aromatase. J Steroid Biochem Mol Biol. 2018. ISSN 0960-0760. [CrossRef]. Wajchenberg BL. Tecido Adiposo como Glândula Endócrina. Arq Bras Endocrinol Metab. 2000; 44(1): 13-20. ISSN 1677-9487. [CrossRef]. Barros ACSD de, Leite KRM. Classificação molecular dos carcinomas de mama: uma visão contemporânea. Rev Bras Mastol. 2015. ISSN 0104-8058. [CrossRef]. Ghosh D, Lo J, Morton D, Valette D, Xi J, Griswold J et al. Novel aromatase inhibitors by structure-guided design. J Med Chem. 2012. ISSN 1520-4804. [CrossRef].
Publicado por (Instituto)