Pular para o conteúdo principal

Combatendo a COVID-19 através do fortalecimento do sistema imune com produtos naturais

Revista Fitos

O sistema imune inato reconhece estruturas químicas dos vírus, ativando células capazes de bloquear a infecção viral, e ativa, também, o sistema imune adaptativo a desenvolver anticorpos que destroem ou imobilizam os vírus. De forma análoga, os componentes químicos de produtos naturais derivados de plantas e de leveduras podem agir como ativadores do sistema imune, ativando a defesa contra infecção viral. Neste trabalho, examinou-se diversos produtos naturais de alimentos e plantas medicinais, cujos componentes químicos, possivelmente, poderiam contribuir para a defesa contra SARS-CoV-2, o vírus que causa a COVID-19.

DOI
10.32712/2446-4775.2021.1108
Identificação
Referências do artigo
Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules. 2016; 21(5): 559. ISSN 1420-3049. [CrossRef] [PubMed]. Rates SM. Plants as source of drugs. Toxicon. 2001; 39(5): 603-13. ISSN 0041-0101. [CrossRef]. Calixto JB. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz J Med Biol Res. 2000; 33(2): 179-89. [CrossRef]. Cragg GM, Newman DJ, Snader KM. Natural products in drug discovery and development. J Nat Prod. 1997; 60(1): 52-60. [CrossRef]. Medzhitov R, Janeway CJr. Innate immunity. N Engl J Med. 2000; 343(5): 338-44. ISSN 1533-4406. [PubMed] [CrossRef]. Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol. 2018; 14(Suppl 2): 49. [CrossRef]. Martines RB, Ritter JM, Matkovic E, Gary J, Bollweg BC, Bullock H et al. Pathology and pathogenesis of SARS-CoV-2 associated with fatal coronavirus disease, United States. Emerg Infect Dis. 2020; 26(9): 2005-2015. [CrossRef] [PubMed]. Cao P, McCaw JM. The mechanisms for within-host influenza virus control affect model-based assessment and prediction of antiviral treatment. Viruses. 2017; 9(8):197. [CrossRef]. Kawasaki T, Kawai T. Toll-like Receptor Signaling Pathways. Front Immunol. 2014; 5: 461. [CrossRef]. Belvin MP, Anderson KV. A Conserved Signaling Pathway: The Drosophila Toll-Dorsal Pathway. Annu Rev Cell Dev Biol. 1996; 12: 393-416. [CrossRef]. Hajishengallis G, Lambris JD. More than complementing Tolls: complement-Toll-like receptor synergy and crosstalk in innate immunity and inflammation. Immunol Rev. 2016; 274(1): 233-244. [CrossRef]. Loo YM, Gale JrM. Immune signaling by RIG-I-like receptors. Immunity. 2011; 34(5): 680-692. [CrossRef]. Saijo S, Iwakura Y. Dectin-1 and dectin-2 in innate immunity against fungi. Int Immunol. 2011; 23(8): 467-72. [CrossRef]. Reid DM, Gow NAR, Brown GD. Pattern recognition: Recent insights from dectin-1. Curr Opin Immunol. 2009; 21(1): 30-7. [CrossRef]. Gow NAR, Netea MG, Munro CA, Ferwerda G, Bates S, Mora-Montes HM et al. Immune recognition of Candida albicans beta-glucan by dectin-1. J Infect Dis. 2007; 196(10): 1565-71. [CrossRef]. Derengowski LS. Caracterização da resposta de fungos patogênicos a diferentes condições de interação intra e inter-reinos. 2011. 177 f., il. Tese de Doutorado [Programa de Pós-Graduação em Biologia Molecular] - Universidade de Brasília, Brasília, 2011. Disponível em: [Link]. Acesso em: 8 jun. 2020. Araújo VBS. Obtenção de manoproteína e β-glucana de levedura descartada em cervejaria com potencial para aplicação em alimentos. Tese de mestrado [Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos] - Universidade Federal da Paraíba (UFPB), João Pessoa, 2014. Disponível em: [Link]. Acesso em: 8 jun. 2020. Magnani M, Castro-Gómez RJH. β-glucana from Saccharomyces cerevisiae: constitution, bioactivity and obtaining. Semina: Ciên Agr. 2008; 29(3): 631-650. Klis FM. Review: Cell Wall Assembly in Yeast. Yeast. 1994; 10(7): 851-69. [CrossRef]. Volman JJ, Ramakers JD, Plat J. Dietary modulation of immune function by beta-glucans. Physiol Behav. 2008; 94(2): 276-84. PMID: 18222501. [CrossRef] [PubMed]. Golonka RM, Saha P, Yeoh BS, Chattopadhyay S, Gewirtz AT, Joe B et al. Harnessing innate immunity to eliminate SARS-CoV-2 and ameliorate COVID-19 disease. Physiol Genomics. 2020; 52(5): 217-221. [CrossRef] [PubMed]. Zhang B, Chassaing B, Shi Z, Uchiyama R, Zhang Z, Denning TL et al. Viral infection. Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of IL-22 and IL-18. Sci. 2014; 346(6211): 861-5. [CrossRef]. Nantz MP, Rowe CA, Muller CE, Creasy RA, Stanilka JM, Percival SS. Supplementation with aged garlic extract improves both NK and γδ-T cell function and reduces the severity of cold and flu symptoms: a randomized, double-blind, placebo-controlled nutrition intervention. Clin Nutr. 2012; 31(3): 337-44. [CrossRef]. Seyfried M, Soldera-Silva A, Bovo F, Stevan-Hancke FR, Maurer JBB, Zawadzkibaggio SF. Pectinas de plantas medicinais: características estruturais e atividades imunomoduladoras. Rev Bras Pl Med. 2016; 18(1): 201-214. [Link]. Tostes JBF, Nakamura MJ, de Saboya CGF, Mazzei JL, Siani AC. Efficient and selective method to separate triterpene acids by direct treatment of apple peels with alkaline ethanol. Separ Sci Technol. 2016; 51(12): 1986-1993. [CrossRef]. Abe N, Ebina T, Ishida N. Interferon induction by glycyrrhizin and glycyrrhetinic acid in mice. Microbiol Immunol. 1982; 26(6): 535-9. [CrossRef]. Graebin CS. The pharmacological activities of glycyrrhizinic acid (“glycyrrhizin”) and glycyrrhetinic acid. Sweeteners. 2018; 245-261. [CrossRef]. Hoever G, Baltina L, Michaelis M, Kondratenko R, Baltina L, Tolstikov GA et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J Med Chem. 2005; 48(4): 1256-9. [CrossRef]. Sallusto F, Lanzavecchia A. The instructive role of dendritic cells on T-cell responses. Arthritis Res. 2002; 4(Suppl 3): S127-32. [CrossRef]. Schijns V, Lavelle EC. Prevention and treatment of COVID-19 disease by controlled modulation of innate immunity. Eur J Immunol. 2020; 50(7): 932-938. [CrossRef]. Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020. [CrossRef]. He LX, Ren JW, Liu R, Chen QH, Zhao J, Wu X et al. Ginseng (Panax ginseng Meyer) oligopeptides regulate innate and adaptive immune responses in mice via increased macrophage phagocytosis capacity, NK cell activity and Th cells secretion. Food Funct. 2017; 8(10): 3523-3532. [CrossRef]. Cho YJ, Son HJ, Kim KS. A 14-week randomized, placebo-controlled, double-blind clinical trial to evaluate the efficacy and safety of ginseng polysaccharide (Y-75). J Transl Med. 2014; 12: 283. [CrossRef]. Hirahashi T, Misako MM, Kaoru K, Yoshiko Y, Michio UM, Tsukasa ST. Activation of the human innate immune system by Spirulina: augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis. Int Immunopharmacol. 2002; 2(4): 423-34. [CrossRef]. Chen Y, Chang G, Kuo S, Huang S, Hu I, Lo Y et al. Well-tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality. Sci Rep. 2016; 6: 24253. [CrossRef]. McCarty MF, DiNicolantonio JJ. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus. Prog Cardiovasc Dis. 2020. [CrossRef]. Alam K, Hoq O, Uddin S. Medicinal plant Allium sativum - A review. J Med Pl Studies. 2016; 4(6): 72-79. ISSN 2320-3862. [Link]. Reid K. Garlic lowers blood pressure in hypertensive individuals, regulates serum cholesterol, and stimulates immunity: An updated meta-analysis and review. J Nutr. 2016; 146(2): 389S-396S. [CrossRef]. Donma MM, Donma O. The effects of allium sativum on immunity within the scope of COVID-19 infection. Med Hypotheses. 2020; 144: 109934. [CrossRef]. Arreola R, Quintero-Fabián S, López-Roa RI, Flores-Gutiérrez EQ, Reyes-Grajeda JP, Carrera-Quintanar L et al. Immunomodulation and anti-inflammatory effects of garlic compounds. J Immunol Res. 2015; 2015: 401630. [CrossRef]. Kyo E, Uda N, Kasuga S, Itakura Y. Immunomodulatory effects of aged garlic extract. The J Nutr. 2001; 131(3): 1075S-1079S. [CrossRef]. Thuy BTP, My TTA, Hai NTT, Hieu LT, Hoa TT, Loan HTP et al. Investigation into SARS-CoV 2 resistance of compounds in garlic essential oil. ACS Omega. 2020; 5(14): 8312-8320. [CrossRef]. Chen K, Xie K, Liu Z, Nakasone Y, Sakao K, Hossain A, Hou DX. Preventive effects and mechanisms of garlic on dyslipidemia and gut microbiome dysbiosis. Nutrients. 2019; 11(6): 1225. [CrossRef]. Sunu P, Sunarti D, Mahfudz LD, Yunianto VD. Prebiotic activity of garlic (Allium sativum) extract on Lactobacillus acidophilus. Vet World. 2019; 12(12): 2046-2051. [CrossRef]. Shinde T, Hansbro PM, Sohal SS, Dingle P, Eri R, Stanley R. Microbiota modulating nutritional approaches to countering the effects of viral respiratory infections Including SARS-CoV-2 through promoting metabolic and immune fitness with probiotics and plant bioactives. Microorganisms. 2020; 8(6): E921. [CrossRef]. Ozdal T, Sela DA, Xiao J, Boyacioglu D. Chen F, Capanoglu E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients. 2016; 8(2): 78. [CrossRef] [PubMed]. Williamson G, Kay CD, Crozier A. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Comp Rev Food Sci Food Safety. 2018; 17: 1054-1112. [CrossRef]. Baud D, Agri VD, Gibson GR, Reid G, Giannoni E. Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Front Public Health. 2020; 8: 186. [CrossRef] [PubMed]. Calder PC, Carr AC, Gombart AF, Eggersdorfer M. Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients. 2020; 12: 1181. Bellavite P, Donzelli A. Hesperidin and SARS-CoV-2: New light on the healthy functions of citrus fruit. Preprints 2020; 2020060321. [CrossRef]. Barreca D, Mandalari G, Calderaro A, Smeriglio A, Trombetta D, Felice MR et al. Citrus flavones: an update on sources, biological functions, and health promoting properties. Plants (Basel). 2020 Feb. 26; 9(3): 288. [CrossRef] [PubMed]. Bachevski D, Damevska K, Simeonovski V, Dimova M. Back to the basics: Propolis and COVID-19. Dermatol Ther. 2020: e13780. [CrossRef]. Williamson G, Kerimi A. Testing of natural products in clinical trials targeting the SARS-CoV-2 (Covid-19) viral spike protein-angiotensin converting enzyme-2 (ACE2) interaction. Bioch Pharmacol. 2020; 178: 114123. [CrossRef]. Katzelnick LC, Gresh L, Halloran E, Mercado JC, Kuan G, Gordon A et al. Antibody-dependent enhancement of severe dengue disease in humans. Sci. 2017; 358: 929-932. [CrossRef]. Ricke DO, Malone RW. Medical Countermeasures Analysis of 2019-nCoV and Vaccine Risks for Antibody-Dependent Enhancement (ADE). Preprints 2020. [CrossRef]. Disponível em: [Link]. Acesso em: 1 jun. 2020. Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL et al. Immunization With SARS Coronavirus Vaccines Leads to Pulmonary Immunopathology on Challenge With the SARS Virus. PLoS One. 2012; 7(4): e35421. [CrossRef]. Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 2019; 4(4): e123158. [CrossRef]. Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q et al. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol. 2020; 94(5): e02015-19. [CrossRef]. Cao W, Li T. COVID-19: towards understanding of pathogenesis. Cell Res. 2020; 30: 367-369. [CrossRef]. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020; 8(4): 420-422. [CrossRef]. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X et al. COVID-19 infection: the perspectives on immune responses. Version 2. Cell Death Differ. 2020; 27(5): 1451-1454. [CrossRef]. RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report. N Engl J Med. 2020. [CrossRef]. Villar J, Ferrando C, Martínez D, Ambrós A, Muñoz T, Soler JA et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020; 8(3): 267-276. [CrossRef]. Dahl R. Systemic side effects of inhaled corticosteroids in patients with asthma. Respir Med. 2006; 100 (8): 1307-17. [CrossRef]. Olsen PC, Kitoko JZ, Ferreira TP, de-Azevedo CT, Arantes AC, Martins ΜA. Glucocorticoids decrease Treg cell numbers in lungs of allergic mice. Eur J Pharmacol. 2015; 747: 52-8. [CrossRef]. Polderman JA, Farhang-Razi V, Van Dieren S, Kranke P, De Vries JH, Hollmann MW et al. Adverse side effects of dexamethasone in surgical patients. Cochrane Database Syst Rev. 2018; 8(8): CD011940. [CrossRef]. Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S et al. Quercetin, inflammation and immunity. Nutrients. 2016; 8(3): 167. [CrossRef]. Hewlings SJ, Kalman DS. Curcumin: A Review of Its’ Effects on Human Health. Foods. 2017; 6(10): 92. [CrossRef]. Mashhadi NS, Ghiasvand R, Askari G, Hariri M, Darvishi L, Mofid MR. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: review of current evidence. Int J Prev Med. 2013; 4(Suppl 1): S36-42. [PubMed]. Murtaza G, Sajjad A, Mehmood Z, Shah SH, Siddiqi AR. Possible molecular targets for therapeutic applications of caffeic acid phenethyl ester in inflammation and cancer. J Food Drug Anal. 2015; 23(1): 11-18. [CrossRef]. Ohishi T, Goto S, Monira P, Isemura M, Nakamura Y. Anti-inflammatory action of green tea. Anti-inflamm Antiallergy Agents Med Chem. 2016; 15(2): 74. [CrossRef]. Coutinho DS, Pacheco MT, Frozza RL, Bernardi A. Anti-Inflammatory effects of resveratrol: mechanistic insights. Int J Mol Sci. 2018; 19(6): 1812. [CrossRef]. Akamatsu H, Komura J, Asada Y, Niwa, Y. Mechanism of Anti-Inflammatory Action of Glycyrrhizin: Effect on Neutrophil Functions Including Reactive Oxygen Species Generation. Pl Med. 1991; 57(2): 119-12. [CrossRef]. Račková L, Jančinová V, Petríková M, Drábiková, K, Nosál R, Štefek M et al. Mechanism of anti-inflammatory action of liquorice extract and glycyrrhizin. Nat Prod Res. 2007; 21 (14): 1234-1241. [CrossRef]. Hussein HJ, Hadi HI, Yahya HM. A Review: Anti-microbial, Anti-inflammatory effect and Cardiovascular effects of Garlic: Allium sativum. Res J Pharm Tech. 2017; 10(11): 4069-4078. [CrossRef]. Dorsch W, Schneider E, Bayer T, Breu W, Wagner H. Anti-Inflammatory Effects of Onions: Inhibition of Chemotaxis of Human Polymorphonuclear Leukocytes by Thiosulfinates and Cepaenes. Int Arch Allergy Immunol. 1990; 92: 39-42. [CrossRef]. Amin M, Putra KS, Amin IF, Earlia N, Maulina D, Lukiati B et al. Quercetin: the bioactive compound from Allium cepa L. as anti-inflammation based on in silico screening. Biol Med Nat Prod Chem. 2018; 7(1): 27-31. [CrossRef]. Murphy EA, Davids JM, Brown AS, Carmichael MD, Carson JA, van Rooijen N et al. Benefits of oat β‐glucan on respiratory infection following exercise stress: role of lung macrophages. Am J Physiol Regul Integr Comp Physiol. 2008; 294(5): RI 1593-9. [CrossRef]. Davis JM, Murphy EA, Brown AS, Carmichael MD, Ghaffar A, Mayer EP. Effects of oat beta-glucan on innate immunity and infection after exercise stress. Med Sci Sports Exerc. 2004; 36(8): 1321-7. [CrossRef]. Volman JJ, Mensink RP, Ramakers JD, de Winther MP, Carlsen H, Blomhoff R et al. Dietary (1-->3), (1-->4)-beta-D-glucans from oat activate nuclear factor-kappaB in intestinal leukocytes and enterocytes from mice. Nutr Res. 2010 Jan; 30(1): 40-8. [CrossRef]. Engstad CS, Engstad RE, Olsen J-O, Osterud B. The effect of soluble beta-1,3-glucan and lipopolysaccharide on cytokine production and coagulation activation in whole blood. Int Immunopharmacol. 2002; 2(11): 1585-97. [CrossRef]. Song J-M, Lee K-H, Seong B-L. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res. 2005; 68(2): 66-74. [CrossRef]. Pae M, Wu D. Immunomodulating effects of epigallocatechin-3-gallate from green tea: mechanisms and applications. Food Funct. 2013; 4(9): 1287-303. [CrossRef]. Lambert,JD, Sang S, Hong J, Yang CS. Anticancer and Anti-inflammatory Effects of Cysteine metabolites of the Green Tea Polyphenol, (-)-epigallocatechin-3-gallate. J Agric Food Chem. 2010; 58(18): 10016-10019. [CrossRef]. Cavet ME, Harrington KL, Vollmer TR, Ward KW, Zhang JZ. Anti-inflammatory and anti-oxidative effects of the green tea polyphenol epigallocatechin gallate in human corneal epithelial cells. Mol Vision. 2011; 17: 533-542. Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int. 2014; 186864. [CrossRef]. Ramsewak RS, DeWitt DL, Nair MG. Cytotoxicity, antioxidant and anti-inflammatory activities of curcumins I-III from Curcuma longa. Phytomedicine. 2000; 7(4): 303-8. [CrossRef]. Chen Y-H, Chang G-K, Kuo S-M, Huang S-Y, Hu I-C, Lo Y-L et al. Well-tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality. Sci Rep. 2016; 6: 24253. [CrossRef]. Ravi M, De SL, Azharuddin, S, Paul SFD. The beneficial effects of spirulina focusing on its immunomodulatory and antioxidant properties. Nutr Diet Suppl. 2010; 2: 73-83. [CrossRef]. Rasool M, Sabina EP, Lavanya B. Anti-inflammatory Effect of Spirulina fusiformis on Adjuvant-Induced Arthritis in Mice. Biol Pharm Bull. 2006; 29(12): 2483-2487. [CrossRef]. Perche O, Vergnaud-Gauduchon J, Morand C, Dubray C, Mazur A, Vasson MP. Orange juice and its major polyphenol hesperidin consumption do not induce immunomodulation in healthy well-nourished humans. Clin Nutr. 2014; 33(1): 130-135. [CrossRef]. Popov SV, Ovodov YS. Polypotency of the immunomodulatory effect of pectins. Biochem (Mosc). 2013; 78(7): 823-35. [CrossRef]. Crespo ME, Gálvez J, Cruz T, Ocete MA, Zarzuelo A. Anti-Inflammatory Activity of Diosmin and Hesperidin in Rat Colitis Induced by TNBS. Pl Med. 1999; 65(7): 651-653. [CrossRef]. Guardia T, Rotelli AE, Juarez AO, Pelzer LE. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco. 2001; 56(9): 683-687. [CrossRef]. Chang JS, Wang KC, Yeh CF, Shieh DE, Chiang LC. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 2012; 145(1): 146-151. [CrossRef]. Carrasco FR, Schmidt G, Romero AL, Sartoretto JL, Caparroz-Assef SM, Bersani-Amado CA, et al. Immunomodulatory activity of Zingiber officinale Roscoe, Salvia officinalis L. and Syzygium aromaticum L. essential oils: evidence for humor- and cell-mediated responses. J Pharm Pharmacol. 2009; 61(7): 961-7. [CrossRef]. Im K, Kim J, Min H. Ginseng, the natural effectual antiviral: Protective effects of Korean Red Ginseng against viral infection. J Ginseng Res. 2016; 40(4): 309-314. [CrossRef]. Lee JS, Hwang HS, Ko EJ, Lee YN, Kwon YM, Kim MC et al. Immunomodulatory activity of red ginseng against influenza A virus infection. Nutrients. 2014; 6 (2): 517-29. [CrossRef]. Park J, Cho J. Anti-inflammatory effects of ginsenosides from Panax ginseng and their structural analogs. Afr J Biotechnol. 2009; 8(16): 3682-3690. eISSN 1684-5315. [Link]. Jung K, Ha Y, Ha S-K, Han DU, Kim D-W, Moon WK et al. Antiviral effect of Saccharomyces cerevisiae beta-glucan to swine influenza virus by increased production of interferon-gamma and nitric oxide. J Vet Med B Infect Dis Vet Public Health. 2004; 51(2): 72-6. [CrossRef]. Rhee S-K, Icho T, Wickner RB. Structure and nuclear localization signal of the SK13 antiviral protein of Saccharomyces cerevisiae. Yeast. 1989; 5(3). [CrossRef]. Pelizon AC, Kaneno R, Soares AMVC, Meira DA, Sartori A. Immunomodulatory Activities Associated with beta-glucan derived from Saccharomyces cerevisiae. Physiol Res. 2005; 54(5): 557-564. [PubMed]. Du B, Lin C, Bian Z, Xu B. An insight into anti-inflammatory effects of fungal beta-glucans. Tren Food Sci Technol. 2015; 41(1): 49-59. [CrossRef]. Konowalchuk J, Speirs JI. Antiviral effect of apple beverages. Appl Environ Microbiol. 1978; 36(6): 798-801. [CrossRef]. Suárez B, Álvarez AL, García YD, del Barrio G, Lobo AP, Parra F. Phenolic profiles, antioxidant activity and in vitro antiviral properties of apple pomace. Food Chem. 2010; 120(1): 339–342. [CrossRef]. El-Gamal YM, Elmasry OA, El-Ghoneimy DH, Soliman MI. Immunomodulatory effects of food. Egypt J Pediatr Allergy Immunol. 2011; 9(1): 3-13. [Link]. Lee EH, Park HJ, Kim BO, Choi HW, Park KI, Kang IK, et al. Anti-inflammatory effect of Malus domestica cv. Green ball apple peel extract on Raw 264.7 macrophages. J Applied Biol Chem. 2020; 63(2): 117-123. [CrossRef]. Checker R, Sandur SK, Sharma D, Patwardhan RS, S. Jayakumar S, Kohli V et al. Potent Anti-Inflammatory Activity of Ursolic Acid, a Triterpenoid Antioxidant, Is Mediated through Suppression of NF-κB, AP-1 and NF-AT. PLoS One. 2012; 7(2): e31318. [CrossRef]. Yang F, Zhang Y, Tariq A, Jiang X, Ahmed Z, Zhihao Z et al. Food as medicine: A possible preventive measure against coronavirus disease (COVID-19). Phytother Res. 2020: [CrossRef]. Annunziata G, Zamparelli MS, Santoro C, Ciampaglia R, Stornaiuolo M, Tenore GC et al. May Polyphenols Have a Role Against Coronavirus Infection? An Overview of in vitro Evidence. Front Med (Lausanne). 2020; 7: 240. [CrossRef]. Paraiso IL, Revel JS, Stevens JF. Potential use of polyphenols in the battle against COVID-19. Curr Opin Food Sci. 2020; 32: 149-155. [CrossRef]. Russo M, Moccia S, Spagnuolo C, Tedesco I, Russo GL. Roles of flavonoids against coronavirus infection. Chem Biol Interact. 2020; 328: 109211. [CrossRef]. Chirumbolo S, Marzotto M, Conforti A, Vella A, Ortolani R, Bellavite P. Bimodal action of the flavonoid quercetin on basophil function: An investigation of the putative biochemical targets. Clin Molec Allergy. 2010; 8: 13. [CrossRef]. González-Gallego J, Sánchez-Campos S, Tuñón MJ. Anti-inflammatory properties of dietary flavonoids. Nutr Hosp. 2007; 22(3): 287-93. Rodríguez LCM, Villalba SCL, Solarte WN. Propiedades del propóleo como aditivo natural funcional en la nutrición animal. Biosalud. 2011; 10(2): 101-111. Fischer G, Hübner SO, Vargas GD, Vidor T. Imunomodulação pela própolis. Arq. Inst Biol. 2008; 75 (2): 247-253. Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M et al. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines. 2018; 6(3):91. [CrossRef]. Donnelly LE, Newton R, Kennedy GE, Fenwick PS, Leung RHF, Ito K et al. Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am J Physiol Lung Cell Mol Physiol. 2004; 287(4): L774-L783. [CrossRef]. Aiello A, Farzaneh F, Candore G, Caruso C, Davinelli S, Gambino CM et al. Immunosenescence and its hallmarks: How to oppose aging strategically? A review of potential options for therapeutic intervention. Front Immunol. 2019; 10: 2247. [CrossRef]. Salimi S, Hamlyn JM. COVID-19 and crosstalk with the hallmarks of aging. J Gerontol A Biol Sci Med Sci. 2020 Sep 16; 75(9): e34-e41. glaa149. [CrossRef] [PubMed]. Organização Pan-Americana da Saúde. Folha informativa – COVID-19 (doença causada pelo novo coronavírus). Disponível em: [Link]. Acesso em: 29 jul. 2020.
Publicado por (Instituto)