Pular para o conteúdo principal

A Importância do Núcleo Quinolínico e seus Derivados no Desenvolvimento de Fármacos.

Revista Fitos

No campo da descoberta de fármacos, o núcleo quinolínico é uma importante classe de compostos heterocíclicos, visto que está presente em muitos produtos naturais e sintéticos, os quais possuem um amplo espectro de atividades  biológicas. Portanto, derivados quinolínicos têm sido explorados com muito êxito, principalmente, na descoberta de novos agentes tuberculostáticos, o que pode ser exemplificado pelas promissoras perspectivas apresentadas pela substância TMC 207, atualmente em fase II de testes clínicos. Sendo assim, o objetivo deste artigo é analisar a importância do núcleo quinolínico no desenvolvimento de fármacos.

DOI
10.32712/2446-4775.2010.119
Identificação
Referências do artigo
ANDERBERG, P.I.; HARDING, M.M.; LAY, P.A. The effect of metal ions on the electrochemistry of the antitumor antibiotic streptonigrin. Journal of Inorganic Biochemistry, v.98, p.720-726, 2004. ANDRIES, K.; VERHASSELT, P.; GUILLEMONT, J.; GÖHLMANN, H.W.H.; NEEFS, J.; WINKLER, H.; GESTEL, J.V.; TIMMERMAN, P.; ZHU, M.; LEE, E.; WILLIAMS, P.; CHAFFOY, D.; HUITRIC, E.; HOFFNER, S.; CAMBAU, E.; TRUFFOT-PERNOT, C.; LOUNIS, N.; JARLIER, V. A Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium tuberculosis. Science, v.307, p.223-227, 2005. CANDÉA, A.L.P.; FERREIRA, M.L.; PAIS, K.C.; CARDOSO, L.N.F.; KAISER, C.R.; HENRIQUES, M.G.M.O.; LOURENÇO, M.C.S.; BEZERRA, F.A.F.M.; SOUZA, M.V.N. Synthesis and antitubercular activity of 7-chloro-4-quinolinylhydrazones derivatives. Bioorganic & Medicinal Chemistry Letters, v.19, n.22, p.6272-6274, 2009. CUNICO, W.; CARVALHO, S.A.; GOMES, C.R.B.; MARQUES, G.H. Fármacos antimalariais - história e perspectivas. Revista Brasileira de Farmácia, v.89, n.1, p.49-55, 2008. FRANÇA, T.C.C.; SANTOS, M.G.; FIGUEROA-VILLAR, J.D. Malária: Aspectos históricos e quimioterapia. Química Nova, v.31, n.5, p.1271-1278, 2008. GILCHRIST, T.L. Heterocyclic chemistry. Londres: Prentice Hall, 1997. GUILLEMONT, J. E. G.; VAN GESTEL, J. F. E.; VENET, M. G. 2004. Preparation of quinoline derivatives and their use as mycobacterial inhibitors. PCT Int. Appl. WO 2004011436. HAAGSMA, A.C.; ABDILLAHI-IBRAHIM, R.; WAGNER, M.J.; KRAB, K.; VERGAUWEN, K.; GUILLEMONT, J.; ANDRIES, K.; LILL, H.; KOUL, A.; BALD, D. Selectivity of TMC207 towards Mycobacterial ATP Synthase Compared with That towards the Eukaryotic Homologue. Antimicrobial Agents and Chemotherapy, v.53, n.3, p.1290-1292, 2009. HAN, X.; LAMSHÖFT, M.; GROBE, N.; REN, X.; FIST, A.J.; KUTCHAN, T.M.; SPITELLER, M.; ZENK, M.H. The biosynthesis of papaverine proceeds via (S)-reticuline. Phytochemistry, v.71, p.1305-1312, 2010. HEGAZY, G.H.; TAHER, A.; EL-ZAHER, A.A. Synthesis of Some Floctafenine Derivatives of Expected Anti-inflammatory/Analgesic Activity. Archives der Pharmazie, v.338, n.8, p.378-384, 2005. HUITRIC, E.; VERHASSELT, P.; ANDRIES, K.; HOFFNER, S.E. In Vitro Antimycobacterial Spectrum of a Diarylquinoline ATP Synthase Inhibitor. Antimicrobial Agents and Chemotherapy, v.51, n.11, p.4202-4204, 2007. IBRAHIM, M.; ANDRIES, K.; LOUNIS, N.; CHAUFFOUR, A.; TRUFFOT-PERNOT, C.; JARLIER, V.; VEZIRIS, N. Synergistic Activity of R207910 Combined with Pyrazinamide against Murine Tuberculosis. Antimicrobial Agents and Chemotherapy, v.51, n.3, p.1011-1015, 2007. KOUL, A.; VRANCKX, L.; DENDOUGA, N.; BALEMANS, W.; WYNGAERT, I.V.; VERGAUWEN, K.; GÖHLMANN, H.W.H.; WILLEBRORDS, R.; PONCELET, A.; GUILLEMONT, J.; BALD, D.; ANDRIES, K. Diarylquinolines Are Bactericidal for Dormant Mycobacteria as a Result of Disturbed ATP Homeostasis. The Journal of Biological Chemistry, v.283, n.37, p.25273-25280, 2008. KNORR, B.; HOLLAND, S.; SCHWARTZ, J.; ROGERS, J.D.; REISS, T.F. Clinical pharmacology of montelukast. Clinical and Experimental Allergy Reviews, v.1, n.3, p.254-260, 2001. LOUNIS, N.; GEVERS, T.; VAN DEN BERG, J.; ANDRIES, K. Impact of the Interaction of R207910 with Rifampin on the Treatment of Tuberculosis Studied in the Mouse Model. Antimicrobial Agents and Chemotherapy, v.52, n.10, p.3568-3572, 2008. LOUNIS, N.; VEZIRIS, N.; CHAUFFOUR, A.; TRUFFOT-PERNOT, C.; ANDRIES, K.; JARLIER, V. Combinations of R207910 with Drugs Used To Treat Multidrug-Resistant Tuberculosis Have the Potential To Shorten Treatment Duration. Antimicrobial Agents and Chemotherapy, v.50, n.11, p.3543-3547, 2006. MAO, J.; YUAN, H.; WANG, Y.; WAN, B.; PIERONI, M.; HUANG, Q.; BREEMEN, R.B.; KOZIKOWSKI, A.P.; FRANZBLAU, S.G. From serendipity to rational antituberculosis drug discovery of mefloquine-isoxazole carboxylic acid esters. Journal of. Medicinal Chemistry, v.52, n.22, p.6966-6978, 2009. MAO, X.; SCHIMMER, A.D. The toxicology of Clioquinol. Toxicology Letters, v.182, n.1, p.1-6, 2008. MEDIĆ-Å ARIĆ, M.; MAYSINGER, D.; MOVRIN, M.; DVORŽAK, I. Antibacterial and Antifungal Activities of Nitroxoline Mannich Bases. Chemotherapy, v.26, n.4, p.263-267, 1980. MURALEEDHARAN, K.M.; AVERY, M.A. Advances in the Discovery of New Antimaláricos. In: TAYLOR, J. B.; TRIGGLE, D. J. Comprehensive Medicinal Chemistry II. Londres: Elsevier Science, p. 765-814, 2006. NAYYAR, A.; MALDE, A.; COUTINHO, E.; JAIN, R. Synthesis, anti-tuberculosis activity, and 3D-QSAR study of ringsubstituted-2/4-quinolinecarbaldehyde derivatives. Bioorganic & Medicinal Chemistry v.14, n.21, p.7302-7310, 2006. OLAJIDE, O.A.; AJAYI, A.M.; WRIGHT, C.W. Anti-inflammatory Properties of Cryptolepine. Phytotherapy Research, v.23, p.1421-1425, 2009. OUTEIRO, T.F.; KONTOPOULOS, E.; ALTMANN, S.M.; KUFAREVA, I.; STRATHEARN, K.E.; AMORE, A.M.; VOLK, C.B.; MAXWELL, M.M.; ROCHET, J.; MCLEAN, P.J.; YOUNG, A.B.; ABAGYAN, R.; FEANY, M.B.; HYMAN, B.T.; KAZANTSEV, A.G. Sirtuin 2 Inhibitors Rescue α-Synuclein-Mediated Toxicity in Models of Parkinson’s Disease. Science, v.317, p.516-519, 2007. RUSTOMJEE , R.; DIACON , A.H.; ALLEN , J.; VENTER , A.; REDDY , C.; PATIENTIA , R.F.; MTHIYANE , T.C.P.; DE MAREZ , T.; HEESWIJK , R.; KERSTENS , R.; KOUL , A.; DE BEULE , K.; DONALD , P.R.; MCNEELEY , D.F. Early Bactericidal Activity and Pharmacokinetics of the Diarylquinoline TMC207 in Treatment of Pulmonary Tuberculosis. Antimicrobial Agents and Chemotherapy, v.52, n.8, p.2831-2835, 2008. SOUZA , M.V.N.; PAIS , K.C.; KAISER , C.R. ; PERALTA , M.A.; FERREIRA , M.L.; LOURENÇO , M.C.S. Synthesis and in vitro antitubercular activity of a series of quinoline derivatives. Bioorganic & Medicinal Chemistry, v.17, n.4, p.1474-1480, 2009. VANGAPANDU , S.; JAIN , M.; JAIN , R.; KAUR , S.; SINGH , P.P. Ring-substituted quinolines as potential anti-tuberculosis agents. Bioorganic & Medicinal Chemistry, v.12, n.10, p.2501-2508, 2004. VENDITTO, V.J.; SIMANEK, E.E. Cancer Therapies Utilizing the Camptothecins: A Review of the in vivo Literature. Molecular Pharmaceutics, v.7, n.2, p.307-349, 2010. WHO. WORLD HEALTH ORGANIZATION. Anti-tuberculosis drug resistance in the world. March 2008. Disponível em: http://www.who.int/tb/publications/mdr_surveillance/en/index.html. Acesso: 25/05/2010. WHO. WORLD HEALTH ORGANIZATION. Global tuberculosis control: a short update to the 2009 report. March 2009. 48p. Disponível em: http://www.who.int/tb/publications/global_report/2009/update/en/index.html. Acesso: 25/05/2010. XU, X.; WILLIAMS, J.W.; SHEN, J.; GONG, H.; YIN, D.; BLINDER, L.; ELDER, R.T.; SANKARY, H.; FINNEGAN, A.; CHONG, A.S.F. In Vitro and In Vivo Mechanisms of Action of the Antiproliferative and Immunosuppressive Agent, Brequinar Sodium. The Journal of Immunology, v.160, p.846-853, 1998.
Publicado por (Instituto)